四个步骤教你如何利用Python掌握机器学习

“机器学习”在最近虽可能不至于到人尽皆知的程度,却也是非常火热的词汇。机器学习是英文单词“Machine Learning”(简称ML)的直译,从字面上便说明了这门技术是让机器进行“学习”的技术。然而我们知道机器终究是死的,所谓的“学习”归根结底亦只是人类“赋予”机器的一系列运算。这个“赋予”的过程可以有很多种实现,而Python正是其中相对容易上手、同时性能又相当不错的一门语言。

本文打算先谈谈机器学习相关的一些比较宽泛的知识,再介绍关于使用Python来作为机器学习工具的内容。为了方便交流建了个Q群:953882093 有问题可直接问群内大佬

什么是机器学习

清晨的一句“今天天气真好”、朋友之间的寒暄“你刚刚是去吃饭了吧”、考试过后的感叹“复习了那么久终有收获”……这些日常生活中随处可见的话语,其背后却已蕴含了“学习”的思想—它们都是利用以往的经验、对未知的新情况作出的有效的决策。而把这个决策的过程交给计算机来做。

为了理解和应用机器学习技术,你需要学习 Python 或者 R。这两者都是与 C、Java、PHP 相类似的编程语言。但是,因为 Python 与 R 都比较年轻,而且更加“远离”CPU,所以它们显得简单一些。相对于R 只用于处理数据,使用例如机器学习、统计算法和漂亮的绘图分析数据, Python 的优势在于它适用于许多其他的问题。因为 Python 拥有更广阔的分布(使用 Jango 托管网站,自然语言处理 NLP,访问 Twitter、Linkedin 等网站的 API),同时类似于更多的传统语言,比如 C python 就比较流行。

在Python中学习机器学习的四个步骤

1、首先你要使用书籍、课程、视频来学习 Python 的基础知识

2、尽管内建的Python库对于机器学习来说已经足够了,但是你还可以从外部导入所需的库。像Numpy、Pandas、Matplotlib都是机器学习中广泛使用的库,所以你必需掌握不同的模块,比如 NLP (自然语言处理),来处理、清理、绘图和理解数据。

3、接着你必需能够从网页抓取数据,无论是通过网站API,还是网页抓取模块Beautiful Soap。通过网页抓取可以收集数据,应用于机器学习算法。

4、最后一步,你必需学习机器学习工具,比如 Scikit-Learn,或者在抓取的数据中执行机器学习算法(ML-algorithm)。

在这个过程中,还需要了解的一个主题是数据预处理和机器学习技术,

就数据预处理要做的,包含以下内容

  • 数据预处理
  • 分析数据
  • 可视化数据单变量图
  • 可视化数据多变量图

下一步的机器学习技术:

  • 回归
  • 异常检测
  • 聚类
  • 分类

机器学习算法是机器学习的基础,使机器智能的重要部分。所以建议在使用Python之前,先从理论上理解这些算法。然后用Python实现它的实际实现。

想要学习机器学习的AI算法和实战项目,可以扫下方二维码领取相关源码课件资源包,备注222通过:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值