差分约束总结思考——银河

在这里插入图片描述
题目来源:https://www.acwing.com/problem/content/370/

总结(对差分约束)与思路

  • 使用差分约束思路求解的时候先判断图中是否存在正环,如果存在正环说明无解,输出-1,当不存在正环的时候那么求解从源点到各个点的最长路径;
  • 这道题目除了使用差分约束的思路求解之外由于这道题目的图比较特殊,所有边权都是大于等于0的,所以可以使用强连通分量求解,但是并不是所有的差分约束问题都可以使用强连通分量来求解
  • 我们可以使用tarjan算法求解出所有的强连通分量,然后缩点,如果发现属于同一个强连通分量中存在大于0的边,因为强连通分量中任意两点可以相互到达,而且所有边权都是大于等于0的所以肯定存在正环,直接输出-1即可,否则一个强连通分量向另外一个强连通分量连一条权重为ck的边,由于tarjan算法求解所有强连通分量的时候每一个强连通分量都是按照逆序的顺序排序的,所以逆序枚举所有的强连通分量,递推求解最长路即可,将每一个强连通分量看成是一个点,最后枚举一下dis数组求解答案即可。

代码

#include<iostream>
#include<algorithm>
#include<cstring>

using namespace std;

const int N =100010,M=6*N;

int e[M],ne[M],w[M],h[N],hs[N],idx;
bool in_stk[N];
int stk[N],low[N],dfn[N],top,tm;
int scc_cnt,scc_size[N],id[N];
int dist[N];
int n,m;

void add(int h[],int a,int b,int c){
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

void targin(int u){
    
    low[u]=dfn[u]=++tm;
    stk[++top]=u,in_stk[u]=true;
    
    for(int i=h[u];~i;i=ne[i]){
        int j=e[i];
        
        if(!dfn[j]){
            targin(j);
            low[u]=min(low[u],low[j]);
        }else if(in_stk[j])low[u]=min(low[u],dfn[j]);
    }
    
    if(dfn[u]==low[u]){
        scc_cnt++;
        int y;
        do{
            y=stk[top--];
            in_stk[y]=false;
            id[y]=scc_cnt;
            scc_size[scc_cnt]++;
        }while(y!=u);
    }
}
int main(){
    scanf("%d%d",&n,&m);
    memset(h,-1,sizeof h);
    memset(hs,-1,sizeof hs);
    
    while(m--){
        int t,a,b;
        scanf("%d%d%d",&t,&a,&b);
        if(t==1)add(h,a,b,0),add(h,b,a,0);
        else if(t==2)add(h,a,b,1);
        else if(t==3)add(h,b,a,0);
        else if(t==4)add(h,b,a,1);
        else add(h,a,b,0);
    }
    
    for(int i=1;i<=n;i++)add(h,0,i,1);//超级原点
    // for(int i=1;i<=n;i++){
    //     if(!dfn[i])targin(i);
    // }
    targin(0);//因为0号点可以到其他点
    //拓扑序:tarjan算法之后,倒着推就是拓扑序
    bool f=false;
    for(int i=0;i<=n;i++){
        for(int j=h[i];~j;j=ne[j]){
            int k=e[j];
            
            int a=id[i],b=id[k];
            
            if(a==b){
                if(w[j]){
                    f=true;
                    break;
                }
            }else{
                add(hs,a,b,w[j]);
            }
        }
        if(f)break;
    }
    if(f)puts("-1");//存在正环
    else{
        
        for(int i=scc_cnt;i;i--){
            for(int j=hs[i];~j;j=ne[j]){
                int k=e[j];
                dist[k]=max(dist[k],dist[i]+w[j]);//i,k是编号,j是边
            }
        }
        
        long long res=0;
        // 结果 = 新图里每个scc的距离 * scc里的点数 = dist[scc] * cnt[scc] 
        for(int i=1;i<=scc_cnt;i++){
            res+=(long long)dist[i]*scc_size[i];
        }
        printf("%lld",res);
    }
    
    
    
    return 0;
}
  • 8
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值