[蓝桥杯 2023 省 B] 接龙数列

文章讲述了如何通过优化算法解决关于整数数列的接龙性质问题,涉及最长上升子序列的思想和滚动数组技巧。
摘要由CSDN通过智能技术生成

[蓝桥杯 2023 省 B] 接龙数列

题目描述

对于一个长度为 K K K 的整数数列: A 1 , A 2 , … , A K A_{1},A_{2},\ldots,A_{K} A1,A2,,AK,我们称之为接龙数列当且仅当 A i A_{i} Ai 的首位数字恰好等于 A i − 1 A_{i-1} Ai1 的末位数字( 2 ≤ i ≤ K 2 \leq i \leq K 2iK)。

例如 12 , 23 , 35 , 56 , 61 , 11 12,23,35,56,61,11 12,23,35,56,61,11 是接龙数列; 12 , 23 , 34 , 56 12,23,34,56 12,23,34,56 不是接龙数列,因为 56 56 56 的首位数字不等于 34 34 34 的末位数字。所有长度为 1 1 1 的整数数列都是接龙数列。

现在给定一个长度为 N N N 的数列 A 1 , A 2 , … , A N A_{1},A_{2},\ldots,A_{N} A1,A2,,AN,请你计算最少从中删除多少 个数,可以使剩下的序列是接龙序列?

输入格式

第一行包含一个整数 N N N

第二行包含 N N N 个整数 A 1 , A 2 , … , A N A_{1},A_{2},\ldots,A_{N} A1,A2,,AN

输出格式

一个整数代表答案。

样例 #1

样例输入 #1

5
11 121 22 12 2023

样例输出 #1

1

提示

【样例说明】

删除 22 22 22,剩余 11 , 121 , 12 , 2023 11,121,12,2023 11,121,12,2023 是接龙数列。

【评测用例规模与约定】

对于 20 % 20 \% 20% 的数据, 1 ≤ N ≤ 20 1 \leq N \leq 20 1N20

对于 50 % 50 \% 50% 的数据, 1 ≤ N ≤ 1 0 4 1 \leq N \leq 10^4 1N104

对于 100 % 100 \% 100% 的数据, 1 ≤ N ≤ 1 0 5 1 \leq N \leq 10^{5} 1N105 1 ≤ A i ≤ 1 0 9 1 \leq A_{i} \leq 10^{9} 1Ai109。所有 A i A_{i} Ai 保证不包含前导 0。

蓝桥杯 2023 省赛 B 组 E 题。

思路分析

这道题有点类似于最长上升子序列的分析方式,状态表示都是为以f[i]结尾的最长的接龙序列,普通的最长上升子序列写法时间复杂度为 O ( n 2 ) O(n^2) O(n2),如果本道题也直接写的话,也会超时,所以我们通过观察序列可知,我们其实只要看上一个数列的末尾就可以了

代码

//类似于最长上升子序列,n^2,所以要优化,用滚动数组

#include<iostream>
#include<algorithm>
#include<cstring>

using namespace std;

const int N = 1e5+10;

int w[N],f[N];
int g[N];
char s[N];
int a[N],b[N];//首位和末位
int n;

int main(){
    cin>>n;
    
    for(int i=1;i<=n;i++){
        cin>>s;
        int k=strlen(s);
        a[i]=s[0]-'0',b[i]=s[k-1]-'0';
    }
    
    int res=0;
    // for(int i=1;i<=n;i++){
    //     f[i]=1;
    //     for(int j=1;j<i;j++){
    //         if(a[i]==b[j]){
    //             f[i]=max(f[i],f[j]+1);
    //         }
    //     }
    //     res=max(res,f[i]);
    // }
    
    for(int i=1;i<=n;i++){
        f[i]=1;
        //由于第i个数字的首位为a[i],那么只关心以a[i]为结尾的数字
        f[i]=max(f[i],g[a[i]]+1);
        //由于第i个数字的末尾为b[i],那么就要更新g[b[i]]
        g[b[i]]=max(g[b[i]],f[i]);
        
        res=max(res,f[i]);
    }
    
    cout<<n-res;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值