[蓝桥杯 2023 省 B] 接龙数列
题目描述
对于一个长度为 K K K 的整数数列: A 1 , A 2 , … , A K A_{1},A_{2},\ldots,A_{K} A1,A2,…,AK,我们称之为接龙数列当且仅当 A i A_{i} Ai 的首位数字恰好等于 A i − 1 A_{i-1} Ai−1 的末位数字( 2 ≤ i ≤ K 2 \leq i \leq K 2≤i≤K)。
例如 12 , 23 , 35 , 56 , 61 , 11 12,23,35,56,61,11 12,23,35,56,61,11 是接龙数列; 12 , 23 , 34 , 56 12,23,34,56 12,23,34,56 不是接龙数列,因为 56 56 56 的首位数字不等于 34 34 34 的末位数字。所有长度为 1 1 1 的整数数列都是接龙数列。
现在给定一个长度为 N N N 的数列 A 1 , A 2 , … , A N A_{1},A_{2},\ldots,A_{N} A1,A2,…,AN,请你计算最少从中删除多少 个数,可以使剩下的序列是接龙序列?
输入格式
第一行包含一个整数 N N N。
第二行包含 N N N 个整数 A 1 , A 2 , … , A N A_{1},A_{2},\ldots,A_{N} A1,A2,…,AN。
输出格式
一个整数代表答案。
样例 #1
样例输入 #1
5
11 121 22 12 2023
样例输出 #1
1
提示
【样例说明】
删除 22 22 22,剩余 11 , 121 , 12 , 2023 11,121,12,2023 11,121,12,2023 是接龙数列。
【评测用例规模与约定】
对于 20 % 20 \% 20% 的数据, 1 ≤ N ≤ 20 1 \leq N \leq 20 1≤N≤20。
对于 50 % 50 \% 50% 的数据, 1 ≤ N ≤ 1 0 4 1 \leq N \leq 10^4 1≤N≤104。
对于 100 % 100 \% 100% 的数据, 1 ≤ N ≤ 1 0 5 1 \leq N \leq 10^{5} 1≤N≤105, 1 ≤ A i ≤ 1 0 9 1 \leq A_{i} \leq 10^{9} 1≤Ai≤109。所有 A i A_{i} Ai 保证不包含前导 0。
蓝桥杯 2023 省赛 B 组 E 题。
思路分析
这道题有点类似于最长上升子序列的分析方式,状态表示都是为以f[i]
结尾的最长的接龙序列,普通的最长上升子序列写法时间复杂度为
O
(
n
2
)
O(n^2)
O(n2),如果本道题也直接写的话,也会超时,所以我们通过观察序列可知,我们其实只要看上一个数列的末尾就可以了
代码
//类似于最长上升子序列,n^2,所以要优化,用滚动数组
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 1e5+10;
int w[N],f[N];
int g[N];
char s[N];
int a[N],b[N];//首位和末位
int n;
int main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>s;
int k=strlen(s);
a[i]=s[0]-'0',b[i]=s[k-1]-'0';
}
int res=0;
// for(int i=1;i<=n;i++){
// f[i]=1;
// for(int j=1;j<i;j++){
// if(a[i]==b[j]){
// f[i]=max(f[i],f[j]+1);
// }
// }
// res=max(res,f[i]);
// }
for(int i=1;i<=n;i++){
f[i]=1;
//由于第i个数字的首位为a[i],那么只关心以a[i]为结尾的数字
f[i]=max(f[i],g[a[i]]+1);
//由于第i个数字的末尾为b[i],那么就要更新g[b[i]]
g[b[i]]=max(g[b[i]],f[i]);
res=max(res,f[i]);
}
cout<<n-res;
return 0;
}