[NOIP2015 提高组] 子串(线性dp)

[NOIP2015 提高组] 子串

题目背景

NOIP2015 Day2T2

题目描述

有两个仅包含小写英文字母的字符串 A A A B B B

现在要从字符串 A A A 中取出 k k k 个互不重叠的非空子串,然后把这 k k k 个子串按照其在字符串 A A A 中出现的顺序依次连接起来得到一个新的字符串。请问有多少种方案可以使得这个新串与字符串 B B B 相等?

注意:子串取出的位置不同也认为是不同的方案。

输入格式

第一行是三个正整数 n , m , k n,m,k n,m,k,分别表示字符串 A A A 的长度,字符串 B B B 的长度,以及问题描述中所提到的 k k k,每两个整数之间用一个空格隔开。

第二行包含一个长度为 n n n 的字符串,表示字符串 A A A

第三行包含一个长度为 m m m 的字符串,表示字符串 B B B

输出格式

一个整数,表示所求方案数。

由于答案可能很大,所以这里要求输出答案对 1000000007 1000000007 1000000007 取模的结果。

样例 #1

样例输入 #1

6 3 1 
aabaab 
aab

样例输出 #1

2

样例 #2

样例输入 #2

6 3 2 
aabaab 
aab

样例输出 #2

7

样例 #3

样例输入 #3

6 3 3 
aabaab 
aab

样例输出 #3

7

提示

样例解释

所有合法方案如下:(加下划线的部分表示取出的字串)

样例 1: aab ‾   aab,aab   aab ‾ \texttt{\underline{aab}\,aab,aab\,\underline{aab}} aabaab,aabaab
样例 2: a ‾   ab ‾   aab, a ‾   aba   ab ‾ ,a   a ‾   ba   ab ‾ ,aab   a ‾   ab ‾ , aa ‾   b ‾   aab, aa ‾   baa   b ‾ ,aab   aa ‾   b ‾ \texttt{\underline{a}\,\underline{ab}\,aab,\underline{a}\,aba\,\underline{ab},a\,\underline{a}\,ba\,\underline{ab},aab\,\underline{a}\,\underline{ab},\underline{aa}\,\underline{b}\,aab,\underline{aa}\,baa\,\underline{b},aab\,\underline{aa}\,\underline{b}} aabaab,aabaab,aabaab,aabaab,aabaab,aabaab,aabaab
样例 3: a ‾   a ‾   b ‾   aab, a ‾   a ‾   baa   b ‾ , a ‾   ab   a ‾   a   b ‾ , a ‾   aba   a ‾   b ‾ ,a   a ‾   b   a ‾   a   b ‾ ,a   a ‾   ba   a ‾   b ‾ ,aab   a ‾   a ‾   b ‾ \texttt{\underline{a}\,\underline{a}\,\underline{b}\,aab,\underline{a}\,\underline{a}\,baa\,\underline{b},\underline{a}\,ab\,\underline{a}\,a\,\underline{b},\underline{a}\,aba\,\underline{a}\,\underline{b},a\,\underline{a}\,b\,\underline{a}\,a\,\underline{b},a\,\underline{a}\,ba\,\underline{a}\,\underline{b},aab\,\underline{a}\,\underline{a}\,\underline{b}} aabaab,aabaab,aabaab,aabaab,aabaab,aabaab,aabaab

数据范围

对于第 1 组数据: 1 ≤ n ≤ 500 , 1 ≤ m ≤ 50 , k = 1 1≤n≤500,1≤m≤50,k=1 1n500,1m50,k=1;
对于第 2 组至第 3 组数据: 1 ≤ n ≤ 500 , 1 ≤ m ≤ 50 , k = 2 1≤n≤500,1≤m≤50,k=2 1n500,1m50,k=2;
对于第 4 组至第 5 组数据: 1 ≤ n ≤ 500 , 1 ≤ m ≤ 50 , k = m 1≤n≤500,1≤m≤50,k=m 1n500,1m50,k=m;
对于第 1 组至第 7 组数据: 1 ≤ n ≤ 500 , 1 ≤ m ≤ 50 , 1 ≤ k ≤ m 1≤n≤500,1≤m≤50,1≤k≤m 1n500,1m50,1km;
对于第 1 组至第 9 组数据: 1 ≤ n ≤ 1000 , 1 ≤ m ≤ 100 , 1 ≤ k ≤ m 1≤n≤1000,1≤m≤100,1≤k≤m 1n1000,1m100,1km;
对于所有 10 组数据: 1 ≤ n ≤ 1000 , 1 ≤ m ≤ 200 , 1 ≤ k ≤ m 1≤n≤1000,1≤m≤200,1≤k≤m 1n1000,1m200,1km

思路

P2679 字串

评价:这道题虽然代码短,但思维量非常大。

题意:就是给你字符串a和字符串b,然后从a中取出k个子串,问能和b匹配的子串个数。

第一眼看到这题的时候,感觉它很像最短编辑距离,因此我自己想到的是这样的:f[ i ][ j ][ k ] = f[ i-1 ][ j-1 ][ k ] + f[ i-1 ][ j-1 ][ k-1 ]; ( A[i] == B[j] )

见图:(初始想法)
请添加图片描述

也就说:能匹配时,方案数为:单独使用当前字符为一个子串 + 与前面相连形成一个子串;

但这个DP式子是有问题的。如果不使用当前字符,情况是什么样的呢?

所以我们就要分开来设了(因为这道题它可以划分多个子串(之前最短编辑距离的那种貌似只有一个子串),此时就得用两个数组啦)。

设g[ i ][ j ][ k ]为A用到了 i ,B用到了 j ,已经用了 k 个子串, 并且一定用了当前字符(A[i])时的方案数。

设f[ i ][ j ][ k ]为A用到了 i ,B用到了 j ,已经用了 k 个子串, 无论用不用当前字符(A[i])时的方案数总和。

以上这个思路很重要。(对于这种类似最短编辑距离的题目,我们常常在dp的状态表示的时候加个“且使用A[i]”,也就是A[i]一定被用了,其实那个用不用的那个一般很少说)

一下是状态转移的推导:


先分析一下 g 的转移。能转移的前提自然是 A[ i ] == B [ j ]啦。既然 A[i] 一定要用,那么依旧是两种情况:独自成一串与前面的成一串

独自成一串就是图中(你也可以看题目的样例解析)的a,与前面成一串就是ab。

独自成一串,方案数为:f[ i-1 ][ j-1 ][ k-1]。(前面的爱用不用)

与前方共成一串,方案数为:g[ i-1 ][ j-1 ][ k ],因为前一个字符串(A[i-1])也一定要用!(看图(或者看样例解释)可知)所以我们合并一下: g[ i ][ j ][ k ] = f[ i-1 ][ j-1 ][ k-1 ] + g[ i-1 ][ j-1 ][ k ];


接着分析 f 的转移。(同理刚刚所说的)f[ i ][ j ][ k ] 的来源也有两种:
使用当前字符不使用当前字符

对于使用当前字符,方案数算法如上,答案即:s[ i ][ j ][ k ];

对于不使用当前字符,则从f[ i-1 ]转来,即:f[ i -1 ][ j ][ k ];合并一下: f[ i ][ j ][ k ] = f[ i-1 ][ j ][ k ] + s[ i ][ j ][ k ];

所以将两个合并一下子,就得到:

        if(a[i]==b[j]){
            g[i][j][k] = f[i-1][j-1][k-1] + g[i-1][j-1][k];
            f[i][j][k] = f[i-1][j][k] + g[i][j][k];
        }else g[i][j][k] = 0;
    

答案存在f[ n ][ m ][ k ]中,显然边界条件为 f[ i ][ 0 ][ 0 ] = 1;(这个是必然的,对于这种方案数的,我们边界情况通常设1)。

然后

我们可以优化,因为你不觉得第一维度很像是01背包吗,对于这样的我们可以把它优化掉:写成:

    f[0][0]=g[0][0]=1;
    
        for(int i=1;i<=n;i++){
            for(int j=m;j>=1;j--){
                for (int k=1;k<=k1;k++){
                    if (a[i]==b[j]){
                        f[j][k]=(f[j-1][k]%mod+g[j-1][k-1]%mod)%mod;
                        g[j][k]=(g[j][k]%mod+f[j][k]%mod)%mod;
                    }
                    else f[j][k]=0;
                }
            }
        }

代码

#include<cstdio>

using namespace std;

const int N = 1010,mod=1e9+7;

char a[N],b[N];
int n,m,k1,f[N][N],g[N][N];

int main(){
    scanf("%d%d%d",&n,&m,&k1);
    
    scanf("%s%s",a+1,b+1);
    
    f[0][0]=g[0][0]=1;
    
    for(int i=1;i<=n;i++){
        for(int j=m;j>=1;j--){
            for (int k=1;k<=k1;k++){
                if (a[i]==b[j]){
                    f[j][k]=(f[j-1][k]%mod+g[j-1][k-1]%mod)%mod;
                    g[j][k]=(g[j][k]%mod+f[j][k]%mod)%mod;
                }
                else f[j][k]=0;
            }
        }
    }
    printf("%d",g[m][k1]);
    return 0;
}
  • 23
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值