最佳旅游线路(贪心/dp)

最佳旅游线路

题目描述

某旅游区的街道成网格状。其中东西向的街道都是旅游街,南北向的街道都是林阴道。由于游客众多,旅游街被规定为单行道,游客在旅游街上只能从西向东走,在林阴道上则既可从南向北走,也可以从北向南走。

阿龙想到这个旅游街游玩,他的好友阿福给了他一些建议,用分值表示所有旅游街相邻两个路口之见的街道值得游览的程度,分值是从-100到100的整数,所有林阴道不打分。所有分值不可能全是负分。如图:

输入格式

输入文件的第一行是两个整数m和n,之间用一个空格隔开,m表示有m条旅游街(1≤m≤100 ),n 表示有(n+1)条林阴道(1≤n≤20001 )。接下来的m行依次给出了由北向南每条旅游街的分值信息。每行有n个整数,依次表示了自西向东旅游街每一小段的分值。同一行相邻两个数之间用一个空格隔开。

输出格式

输出文件只有一行,是一个整数,表示你的程序找到的最佳游览线路的总分值。

样例 #1

样例输入 #1

3 5 
-50 -47 36 -30 -23 
17 -19 -34 -13 -8 
-42 -3 -43 34 -45

样例输出 #1

84

思路

(1)贪心的思路:

  • 贪心本质上是只考虑当前利益,不往后看(有点往前看的意思)。
  • 所以这道题我们就从前往后看,如果我们的每列的最大值maxv大于0,那不用想,我们就直接加上就行。那如果小于0的话,我们就得看:sum(当前局部最优解)+每列的最大值(maxv)如果大于0,那么我们就加上maxv,这是为什么呢?因为sum+maxv没有小于0说明后面都可能有更好的解。那如果<0的话,那我们的sum就直接为0,因为后面不可能使他大于0(我这里说的后面是当前遍历到的点,sum指的是前i的局部最优解(不包括i的))

(2)dp思路:

  • 这道题可以类似最大字段和的那种方式dp来做。

代码(贪心)

//这道题很典型的贪心,因为每一列都有林荫小道,所以我们就枚举出每列的最大值。
//注意:如果游客开始观光,中途是可以退出的,所以说:起点和终点未必是1和n,但观光的时候必须连续

#include<iostream>
#include<algorithm>
#include<cstring>
#define int long long
using namespace std;

const int N = 2e4+10,M = 110;

int w[M][N];
int n,m;
int ans,sum;

signed main(){
    cin>>n>>m;
    
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            cin>>w[i][j];
        }
    }
    
    for(int i=1;i<=m;i++){
        int maxv=-2e9;
        for(int j=1;j<=n;j++){
            maxv=max(maxv,w[j][i]);
        }
        if(maxv<0){
            ans=max(ans,sum);
            if(sum+maxv>0)sum+=maxv;
            else{
                sum=0;//否则就不走前面,也就是结束计算(到终点了不算了或者不作为起点)
            }
        }else{
            sum+=maxv;
        }
    }
    
    if(sum!=0){
        ans=max(ans,sum);
    }
    
    cout<<ans;
    
    return 0;
}

dp

#include<iostream>
#include<algorithm>
#define int long long
using namespace std;

const int N = 50010,M = 1010;

int w[M][N];
int a[N];
int f[N];
int n,m;
int maxv=-2e9;

signed main(){
    cin>>n>>m;
    
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            cin>>w[i][j];
        }
    }
    
    for(int i=1;i<=m;i++){
        maxv=-2e9;
        for(int j=1;j<=n;j++){
            maxv=max(maxv,w[j][i]);
        }
        
        a[i]=maxv;
    }
    
    int ans=-2e9;
    for(int i=1;i<=m;i++){
        f[i]=max(f[i-1]+a[i],a[i]);
        ans=max(ans,f[i]);
    }
    cout<<ans;
    
    return 0;
    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值