最佳旅游线路
题目描述
某旅游区的街道成网格状。其中东西向的街道都是旅游街,南北向的街道都是林阴道。由于游客众多,旅游街被规定为单行道,游客在旅游街上只能从西向东走,在林阴道上则既可从南向北走,也可以从北向南走。
阿龙想到这个旅游街游玩,他的好友阿福给了他一些建议,用分值表示所有旅游街相邻两个路口之见的街道值得游览的程度,分值是从-100到100的整数,所有林阴道不打分。所有分值不可能全是负分。如图:
输入格式
输入文件的第一行是两个整数m和n,之间用一个空格隔开,m表示有m条旅游街(1≤m≤100 ),n 表示有(n+1)条林阴道(1≤n≤20001 )。接下来的m行依次给出了由北向南每条旅游街的分值信息。每行有n个整数,依次表示了自西向东旅游街每一小段的分值。同一行相邻两个数之间用一个空格隔开。
输出格式
输出文件只有一行,是一个整数,表示你的程序找到的最佳游览线路的总分值。
样例 #1
样例输入 #1
3 5
-50 -47 36 -30 -23
17 -19 -34 -13 -8
-42 -3 -43 34 -45
样例输出 #1
84
思路
(1)贪心的思路:
- 贪心本质上是只考虑当前利益,不往后看(有点往前看的意思)。
- 所以这道题我们就从前往后看,如果我们的每列的最大值maxv大于0,那不用想,我们就直接加上就行。那如果小于0的话,我们就得看:sum(当前局部最优解)+每列的最大值(maxv)如果大于0,那么我们就加上maxv,这是为什么呢?因为sum+maxv没有小于0说明后面都可能有更好的解。那如果<0的话,那我们的sum就直接为0,因为后面不可能使他大于0(我这里说的后面是当前遍历到的点,sum指的是前i的局部最优解(不包括i的))
(2)dp思路:
- 这道题可以类似最大字段和的那种方式dp来做。
代码(贪心)
//这道题很典型的贪心,因为每一列都有林荫小道,所以我们就枚举出每列的最大值。
//注意:如果游客开始观光,中途是可以退出的,所以说:起点和终点未必是1和n,但观光的时候必须连续
#include<iostream>
#include<algorithm>
#include<cstring>
#define int long long
using namespace std;
const int N = 2e4+10,M = 110;
int w[M][N];
int n,m;
int ans,sum;
signed main(){
cin>>n>>m;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>w[i][j];
}
}
for(int i=1;i<=m;i++){
int maxv=-2e9;
for(int j=1;j<=n;j++){
maxv=max(maxv,w[j][i]);
}
if(maxv<0){
ans=max(ans,sum);
if(sum+maxv>0)sum+=maxv;
else{
sum=0;//否则就不走前面,也就是结束计算(到终点了不算了或者不作为起点)
}
}else{
sum+=maxv;
}
}
if(sum!=0){
ans=max(ans,sum);
}
cout<<ans;
return 0;
}
dp
#include<iostream>
#include<algorithm>
#define int long long
using namespace std;
const int N = 50010,M = 1010;
int w[M][N];
int a[N];
int f[N];
int n,m;
int maxv=-2e9;
signed main(){
cin>>n>>m;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>w[i][j];
}
}
for(int i=1;i<=m;i++){
maxv=-2e9;
for(int j=1;j<=n;j++){
maxv=max(maxv,w[j][i]);
}
a[i]=maxv;
}
int ans=-2e9;
for(int i=1;i<=m;i++){
f[i]=max(f[i-1]+a[i],a[i]);
ans=max(ans,f[i]);
}
cout<<ans;
return 0;
}