[NOIP2010 提高组] 关押罪犯(扩展域版):强烈推荐(二分图很经常转化的)

108 篇文章 0 订阅

[NOIP2010 提高组] 关押罪犯

题目背景

NOIP2010 提高组 T3

题目描述

S 城现有两座监狱,一共关押着 N N N 名罪犯,编号分别为 1 ∼ N 1\sim N 1N。他们之间的关系自然也极不和谐。很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突。我们用“怨气值”(一个正整数值)来表示某两名罪犯之间的仇恨程度,怨气值越大,则这两名罪犯之间的积怨越多。如果两名怨气值为 c c c 的罪犯被关押在同一监狱,他们俩之间会发生摩擦,并造成影响力为 c c c 的冲突事件。

每年年末,警察局会将本年内监狱中的所有冲突事件按影响力从大到小排成一个列表,然后上报到 S 城 Z 市长那里。公务繁忙的 Z 市长只会去看列表中的第一个事件的影响力,如果影响很坏,他就会考虑撤换警察局长。

在详细考察了 N N N 名罪犯间的矛盾关系后,警察局长觉得压力巨大。他准备将罪犯们在两座监狱内重新分配,以求产生的冲突事件影响力都较小,从而保住自己的乌纱帽。假设只要处于同一监狱内的某两个罪犯间有仇恨,那么他们一定会在每年的某个时候发生摩擦。

那么,应如何分配罪犯,才能使 Z 市长看到的那个冲突事件的影响力最小?这个最小值是多少?

输入格式

每行中两个数之间用一个空格隔开。第一行为两个正整数 N , M N,M N,M,分别表示罪犯的数目以及存在仇恨的罪犯对数。接下来的 M M M 行每行为三个正整数 a j , b j , c j a_j,b_j,c_j aj,bj,cj,表示 a j a_j aj 号和 b j b_j bj 号罪犯之间存在仇恨,其怨气值为 c j c_j cj。数据保证 1 < a j ≤ b j ≤ N , 0 < c j ≤ 1 0 9 1<a_j\leq b_j\leq N, 0 < c_j\leq 10^9 1<ajbjN,0<cj109,且每对罪犯组合只出现一次。

输出格式

共一行,为 Z 市长看到的那个冲突事件的影响力。如果本年内监狱中未发生任何冲突事件,请输出 0

样例 #1

样例输入 #1

4 6
1 4 2534
2 3 3512
1 2 28351
1 3 6618
2 4 1805
3 4 12884

样例输出 #1

3512

提示

输入输出样例说明

罪犯之间的怨气值如下面左图所示,右图所示为罪犯的分配方法,市长看到的冲突事件影响力是 3512 3512 3512(由 2 2 2 号和 3 3 3 号罪犯引发)。其他任何分法都不会比这个分法更优。

数据范围

对于 30 % 30\% 30% 的数据有 N ≤ 15 N\leq 15 N15

对于 70 % 70\% 70% 的数据有 N ≤ 2000 , M ≤ 50000 N\leq 2000,M\leq 50000 N2000,M50000

对于 100 % 100\% 100% 的数据有 N ≤ 20000 , M ≤ 100000 N\leq 20000,M\leq 100000 N20000,M100000

思路

  • 我们可以通过分析可知,我们得让大的数在不同集合(满足题目的同一个监狱内数小),尽可能让小的数在一个集合内。
  • 此时我们可以让先对权值进行从大到小排序,我们把大的分配到两个不同的监狱,也就是把他们两人看成敌人。那什么时候结束匹配过程,当我们发现没有被遍历到的在同一个集合,说明大的已经分配好了,此时输出结果即可。
  • 这里要特别注意一下,当没有提前结束匹配的时候我们输出 0 0 0,为什么呢?因为无法分配到最优的方案。

AC 代码

//扩展域=>二分图问题可以转化成
#include<iostream>
#include<algorithm>
#include<cstring>

using namespace std;

const int N = 2e4+10,M = 1e5+10;

struct E{
    int x,y,z;
    bool operator<(const E &t)const{
        return z>t.z;
    }
}e[M];
bool st[N];
int n,m;
int b[N];
int p[N];

int find(int x){
    if(x!=p[x])p[x]=find(p[x]);
    return p[x];
}

int main(){
    cin>>n>>m;
    
    for(int i=1;i<=2*n;i++){
        p[i]=i;
    }
    for(int i=1;i<=m;i++){
        int a,b,c;
        cin>>a>>b>>c;
        e[i]={a,b,c};
    }
    
    sort(e+1,e+1+m);
    
    for(int i=1;i<=m;i++){
        //敌人的敌人是朋友
        p[find(e[i].x+n)]=find(e[i].y);
        p[find(e[i].y+n)]=find(e[i].x);
        
        if(find(e[i].x)==find(e[i].y)){
            cout<<e[i].z<<endl;
            return 0;
        }
        
        
    }
    
    puts("0");
    
    return 0;
    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值