离散数学 Discrete Mathematics

Chapter 2 Logic of Compound statements


Statement :

Definition: A statement (or proposition) is a sentence that is true or false but not both.

Propositional logic deals with statements and their truth value

Logic:

Definition :The study of formal reasoning based upon statements (or propositions)

Logic :

◼ Defines a formal language for representing knowledge and for making logical inferences

◼ Helps us to understand how to construct a valid argument

Argument:

Definition :A sequence of statements aimed at demonstrating the truth of an assertion

◼ An argument consists of a sequence of statements called premises and a conclusion

◼ An argument is valid if the conclusion is true whenever the premises are all true

Compound Statements:

Compound statements are constructed from logical connectives and other propositions

Negation

Definition :

◼ If p is a statement variable, the negation of p is “not p” or “It is not the case that p” and is denoted ∼p

◼ It has opposite truth value from p

if p is true, ∼p is false; if p is false, ∼p is true

Truth table:

P

~P

T

F

F

T

Conjunction :

Definition :If p and q are statement variables, the conjunction of p and q is “p and q,” denoted p ∧ q

Truth table:

p

q

p ∧ q

T

T

T

T

F

F

F

T

F

F

F

F

Disjunction :

Definition: If p and q are statement variables, the disjunction of p and q is “p or q,” denoted p ∨ q

Truth table:

p

q

p ∨ q

T

T

T

T

F

T

F

T

T

F

F

F

Exclusive Or:

Definition: If p and q are statement variables, "p exclusive or q" denoted by p ⊕ q is true when exactly one of p and q is true and it is false otherwise

Truth table :

p

q

p ⊕ q

T

T

F

T

F

T

F

T

T

F

F

F

English words of p ⊕ q :

◼ p or q but not both

◼ p or q and not both p and q

Truth table:

p

q

p ∨ q

p ∧ q

~(p ∧ q)

(p ∨ q)∧~(p ∧ q)

T

T

T

T

F

F

T

F

T

F

T

T

F

T

T

F

T

T

F

F

F

F

T

F

Logical Equivalence :

Definition :

◼ Two statement forms are called logically equivalent if, and only if, they have identical truth values

◼ The logical equivalence of statement forms P and Q is denoted by writing P ≡ Q

De Morgan’s Law:

Definition :

◼ The negation of and statement is logically equivalent to or statement in which each component is negated

◼ The negation of or statement is logically equivalent to and statement in which each component is negated

Truth table:

p

q

~p

~q

p ∧ q

~(p ∧ q)

~p∨~q

T

T

F

F

T

F

F

T

F

F

T

F

T

T

F

T

T

F

F

T

T

F

F

T

T

F

T

T

Tautologies and Contradictions :

Definition :

◼ A tautology is statement form that is always true regardless of the truth values of individual statements

◼ A contradiction is statement form that is always false regardless of the truth values of the individual

statements

If t is a tautology and c is a contradiction, then ptp and pcc

Logical Equivalence:

Commutative laws

p ∧ q ≡ q ∧ p

p ∨ q ≡ q ∨ p

Associative laws

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r )

Distributive laws

p ∧ (q ∨ r ) ≡ (p ∧ q) ∨ (p ∧ r )

p ∨ (q ∧ r ) ≡ (p ∨ q) ∧ (p ∨ r )

Identity laws

p ∧ t ≡ p

p ∨ c ≡ p

Negation laws

p ∨ ∼p ≡ t

p ∧ ∼p ≡ c

Double negative law

∼(∼p) ≡ p

∼(∼p) ≡ p

Idempotent laws

p ∧ p ≡ p

p ∧ p ≡ p

Universal bound laws

p ∨ tt

p ∧ cc

De Morgan’s laws

∼(p ∧ q) ≡ ∼p ∨ ∼q

∼(p ∨ q) ≡ ∼p ∧ ∼q

Absorption laws

p ∨ (p ∧ q) ≡ p

p ∧ (p ∨ q) ≡ p

Negations of t and c

tc

ct

Conditional (Implication) :

Definition

◼ If p and q are statement variables, the conditional of q by p is “If p then q” or “p implies q” and is denoted p →q

◼ It is false when p is true and q is false; otherwise it is true We call p the hypothesis (or antecedent or premise) of the conditional and q the conclusion (or consequence)

Truth table:

p

q

p → q

T

T

T

T

F

F

F

T

T

F

F

T

A conditional statement that is true by virtue of the fact that its hypothesis is false is often called vacuously true or true by default

Expression of p q :

Logical equivalence:

(p ∨ q) r ≡ (p r) ∧ (q r)

Conditional Statement

(p ∨ q) → r ≡ (p → r) ∧ (q → r)

If-Then As Or

p → q ≡ ~p ∨ q

Negation of If-then

~(p → q) ≡ p ∧ ~q

Converse and Inverse:

Definition:

◼ The converse of p →q is q → p

◼ The inverse of p →q is ~p → ~q

Contrapositive :

Definition :

  • The contrapositive of a conditional statement "If p then q"is lf ~q then ~p

  • Symbolically the contrapositive of p →q is ~q →~p

A condition statement is logically equivalent to its contrapositive

Only If and If-Then :

Meaning of “only if” :

“p only if q” means “if not q then not p”

◼ Equivalently “if p then q

Biconditional :

Definitation :

Biconditional of p and q is “p if and only if q” and is denoted p ↔ q

◼ It is true if both p and q have the same truth values and is false if p and q have opposite truth values

if and only if are abbreviated iff

Meaning :

◼ (p → q) ∧ (q → p)

◼ q → p can be written “p if q” and p → q can be written “p only if q”

◼ p ↔ q means “p if q and p only if q”

◼ Often written “p if and only if q”

Truth table:

p

p

p q

T

T

T

T

F

F

F

T

F

F

F

T

Sufficient and Necessary conditions :

Definition :

◼ r is a sufficient condition for s means “if r then s

◼ r is a necessary condition for s means “if not r then not s” also “if s then r

◼ r is a necessary and sufficient condition for s means “r if and only if s''

Argument :

Definition :

◼ An argument is a sequence of statements

◼ An argument form is a sequence of statement forms

Valid Argument Form :

Definition:

◼ An argument form consisting of two premises and a conclusion is called a syllogism

Proof by Contradiction :

反证法

Fallacies :

A fallacy is an error in reasoning that results in an invalid argument

Three common fallacies:

  • Vague or ambiguous premises

  • Circular reasoning

  • Jumping to conclusions

Converse Error:

◼ Form: p → q

q

∴ p

Inverse Error:

◼ Form: p → q

~p

∴ ~q

Definitation:

◼ An argument is called sound if and only if, it is valid and all its premises are true

◼ An argument that is not sound is called unsound

Valid Argument Forms :
Boolean Expression for Circuit :

Recognizer is a circuit that outputs a 1 for exactly one particular combination of input signals and outputs 0’s for all other combinations

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值