排列数的二进制末尾零个数可以通过计算排列数的素因子分解中,2的指数次数来确定。具体步骤如下:
-
将排列数进行素因子分解,得到其质因数的集合。例如,对于排列数10,其素因子分解为2^1 * 5^1。
-
计算质因数集合中2的指数次数。对于上述例子中的10,2的指数次数为1。
-
这个指数次数即为排列数的二进制末尾零个数。因为2的指数次数表示可以被2整除的次数,而每个2的整数倍都会在二进制末尾增加一个零。
举例说明:
对于排列数10,其质因子分解为2^1 * 5^1,其中2的指数次数为1,说明10的二进制表示的末尾有一个零。
对于排列数16,其质因子分解为2^4,其中2的指数次数为4,说明16的二进制表示的末尾有四个零
int getsum (int n, int m)
{
int count =0;
int i;
for(i=n; i>=n-m+1; i--)
{
int temp =i;
while((temp &1) ==0)
{
count ++;
temp = temp >>1;
}
}
return count;
}
int main()
{
int m,n;
while(scanf("%d %d",&n,&m) != EOF)
{
int sum;
if(n==0)
break;
sum = getsum (n,m);
printf("%d\n",sum);
}
return 0;
}