大模型创业项目寻求合伙人 目前我们已经有前端、后端、推广、产品等方向, 并已经完成第一阶段开发,正在进行第二阶段社区开发。1)通过封装的大模型平台,将大模型使用门槛降到最低,对标toC的huggingface。但我们仍需要前端(vue)、客户端(react)、后端(java)等开发人员。我们是一个包含20多个985,211的大模型创业团队,2)打造无边界无虚实的虚拟人图文社区。我们的愿景是将大模型带给更多人。
ERROR: Could not build wheels for opencv-python which use PEP 517 and cannot be installed d Python3.6适配的opencv版本是opencv-python 4.5.4.60。第一种可能性当然是 更新setuptools。就是python和opencv版本不匹配。
A Simple Baseline for Video Restoration with Grouped Spatial-temporal Shift(ShiftNet) 视频修复旨在从降质的视频中恢复清晰的帧,具有许多重要的应用。。然而,现有的深度学习方法往往依赖于复杂的网络架构,如光流估计、可变形卷积和跨帧自注意层,导致计算成本高。在这项研究中,我们提出了一个简单而有效的视频修复框架。我们的方法基于分组空间时间位移(grouped spatial-temporal shift),这是一种轻量级和直观的技术,可以。通过引入分组空间位移,我们获。结合基本的2D卷积,这个简单的框架可以有效地聚合帧间信息。
Activating More Pixels in Image Super-Resolution Transformer(HAT)超分 基于Transformer的方法在低级视觉任务(如图像超分辨率)上表现出令人印象深刻的性能。然而,我们发现这些网络只能通过归因分析利用有限的输入信息空间范围。这意味着Transformer的潜力在现有网络中仍未得到充分利用。为了激活更多输入像素以获得更好的重构效果,我们提出了一种新颖的混合注意力Transformer(Hybrid Attention Transformer,HAT)。它结合了通道注意力和基于窗口的自注意力方案,从而利用全局统计和强大的局部拟合能力。
CVPR2023 Deblur论文整理 Paper list 来自 https://github.com/DarrenPan/Awesome-CVPR2023-Low-Level-Vision#image-deblurring简单用GPT翻译一下摘要。
ImportError: /lib/x86_64-linux-gnu/libstdc++.so.6: version `GLIBCXX_3.4.29‘ not found 如果是import matplotlib 遇到该问题,就采用如下代码重装matplotlib。如果是import skimage 遇到该问题,就采用。
ImportError: libgthread-2.0.so.0: cannot open shared object file: No such file or directory 安装cv2遇到库缺失问题
中值滤波,均值滤波,高斯滤波,双边滤波,联合双边滤波介绍 看GAMES202相关课程发现闫老师讲的太好了,所以记录一下。当然文中涉及的PPT也来自闫老师的课程PPT,欢迎交流。首先这几种都是空域的滤波方式,用于抑制图像中的噪声。它们采用的原理基本都是通过滤波核K处理含噪图像C,得到干净的输出图C。滤波核:在处理图像位于坐标 i 处的值时,需要考虑其周围j个位置的坐标(包含i本身)。这j个相邻位置即为滤波核。图像的边缘一般像素变化大,包含高频信号;图像中连续部分像素间差距小,一般是低频信号。...
深度学习图像数据增强 作为cv的基础,数据增扩是很重要的一环。一般来说主要有以下几种:1、通过openCV操作 2、使用torchvision.transform 3、使用torchvision.transform.function 4、使用nvidia.dali 5、albumentations库。对应的数据也一般可以分为1、单图处理,如分类。2、同尺寸多个数据处理,如分割,去噪。3、不同尺寸多个数据处理,如超分。下面将按照方法简单总结一下。几何变换旋转,缩放,翻转,裁剪,平移,仿射变换色彩空间亮度,对比度,饱和度,
光流估计中cost volume详解 原创声明:是暮涯啊我认为之所以光流估计中会使用独有的cost volume,其初始形态是传统基于块的光流估计方法中,对每个前一帧图像F1中的某个块B1,计算其在一定范围内对应于后一帧图像2中哪个块B2最接近。假如B1的坐标为(x1,y1)B2的坐标为(x2,y2),对应这个块的光流矢量就是(x2-x1,y2-y1)。1、FlowNet中的correlation1.1 介绍FlowNet作为光流估计的开山鼻祖,对correlation的计算花了大量篇幅。作者说这些分割啊,深度估计啊这些网络可以产生像素
运动估计运动补偿(Motion estimation and motion compensation,MEMC)入门总结 本文不生产内容, 本文制作内容的搬运工,希望通过本文系统性的整理,能够让您对该领域具有整体的认识。认准原创文章将按照以下目录展开:
ISP论文整理2 上一篇是整理了一些顶会顶刊的AI ISP论文,这里整理一些workshop或者arxiv之类的论文。7、Deep Camera: A Fully Convolutional Neural Network for Image Signal Processin(ICCVW19)论文 被引20说这个传统分阶段ISP会把每个步骤的loss累加并降低最终图像质量。因此用全卷积网络替代缺陷像素校正、去噪、白平衡、曝光校正、去马赛克、颜色变换和伽马编码(defect pixel correction, denois