逻辑回归

逻辑回归

在分类问题中,要预测的变量y为离散值(y=0~1),逻辑回归模型的输出变量范围始终在 0 和 1 之间。

训练集为
{ ( x ( 1 ) , y ( 1 ) ) , ( x ( 2 ) , y ( 2 ) ) , . . . , ( x ( m ) , y ( m ) ) } \{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)})\} {(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))}
输入
x ∈ [ x 0 x 1 ⋮ x n ] 其中 x 0 = 1 , y ∈ { 0 , 1 } x \in \left[ \begin{matrix} x_0 \\ x_1 \\ \vdots \\ x_n \\ \end{matrix} \right] 其中x_0=1,y \in \{0,1\} x x0x1xn 其中x0=1,y{0,1}
逻辑回归模型的假设是:
h θ ( x ) = g ( θ T X ) h_\theta(x)=g(\theta^{\mathrm T}X) hθ(x)=g(θTX)
X X X为特征变量, g ( . ) g(.) g(.)为逻辑函数
g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+ez1
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZEzwMmHR-1677396732146)(C:\Users\20491\AppData\Roaming\Typora\typora-user-images\image-20230223113840999.png)]

如果对于逻辑回归沿用线性回归的代价函数,此时的代价函数是非凸函数,不利于找局部最优值,

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kpT45RTi-1677396732147)(C:\Users\20491\AppData\Roaming\Typora\typora-user-images\image-20230223143832677.png)]

逻辑回归的代价函数为:
J ( θ ) = 1 m ∑ i = 1 m C o s t ( h θ ( x ( i ) ) , y ( i ) ) J(\theta)=\frac{1}{m}\sum^m_{i=1}{Cost(h_{\theta}(x^{(i)}),y^{(i)})} J(θ)=m1i=1mCost(hθ(x(i)),y(i))

C o s t ( h θ ( x ) , y ) = { − l o g ( h θ ( x ) ) , i f y = 1 − l o g ( 1 − h θ ( x ) ) , i f y = 0 Cost(h_{\theta}(x),y)=\left\{ \begin{matrix} -log(h_{\theta}(x)) ,if\quad y=1\\ -log(1-h_{\theta}(x)) ,if\quad y=0 \end{matrix} \right. Cost(hθ(x),y)={log(hθ(x)),ify=1log(1hθ(x)),ify=0

C o s t ( h θ ( x ) , y ) = − y ⋅ l o g ( h θ ( x ) ) − ( 1 − y ) ⋅ l o g ( 1 − h θ ( x ) ) Cost(h_{\theta}(x),y)=-y\cdot log(h_{\theta}(x))-(1-y)\cdot log(1-h_{\theta}(x)) Cost(hθ(x),y)=ylog(hθ(x))(1y)log(1hθ(x))

当实际的 𝑦 = 1 且 h θ ( 𝑥 ) ℎ_{\theta}(𝑥) hθ(x)也为 1 时,误差为 0,

当 𝑦 = 1 但 h θ ( 𝑥 ) ℎ_{\theta}(𝑥) hθ(x)不为 1 时,误差随着 h θ ( 𝑥 ) ℎ_{\theta}(𝑥) hθ(x)变小而变大;

当实际的 𝑦 = 0 且 h θ ( 𝑥 ) ℎ_{\theta}(𝑥) hθ(x)也为 0 时,误差为 0,

当𝑦 = 0 但 h θ ( 𝑥 ) ℎ_{\theta}(𝑥) hθ(x)不为 0 时误差随着 h θ ( 𝑥 ) ℎ_{\theta}(𝑥) hθ(x)的变大而变大。

利用梯度下降算法
θ j : = θ j − α ∂ ∂ θ j J ( θ ) \theta_{j}:=\theta_{j}-\alpha\frac{\partial }{\partial \theta_{j}}J(\theta) θj:=θjαθjJ(θ)
代价函数的导数为
∂ ∂ θ j J ( θ ) = 1 m ∑ i = 1 m [ h θ ( x ( i ) ) − y ( i ) ] x j ( i ) \frac{\partial }{\partial \theta_{j}}J(\theta)=\frac{1}{m}\sum_{i=1}^{m}{[h_{\theta}(x^{(i)})-y^{(i)}]}x_j^{(i)} θjJ(θ)=m1i=1m[hθ(x(i))y(i)]xj(i)
则最终结果为(可同时更新所有的 θ \theta θ
θ j : = θ j − α 1 m ∑ i = 1 m [ h θ ( x ( i ) ) − y ( i ) ] x j ( i ) \theta_{j}:=\theta_{j}-\alpha\frac{1}{m}\sum_{i=1}^{m}{[h_{\theta}(x^{(i)})-y^{(i)}]}x_j^{(i)} θj:=θjαm1i=1m[hθ(x(i))y(i)]xj(i)
此时的梯度函数跟线性回归不太相同,因为 h θ ( x ) h_\theta(x) hθ(x)不同。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NDLilaco

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值