stata有序逻辑回归

Logistic回归分析用于研究X对Y的影响,并且对X的数据类型没有要求,X可以为定类数据,也可以为定量数据,但要求Y必须为定类数据,如果Y有多个选项,并且各个选项之间可以对比大小,例如,1代表“不愿意”,2代表“无所谓”,3代表“愿意”,这3个选项具有对比意义,数值越高,代表样本的愿意程度越高,那么应该使用多元有序Logistic回归分析。

案例:根据年龄、是否患有糖尿病,来分析哪些因素对BMI产生影响,而BMI分为正常、偏高、肥胖三类,为有序变量,因此采用的是有序逻辑回归。

cbdec3190632446d9f685567b37c5a2f.png

 步骤:首先进行平行性检验
在命令框中输入:
ologit BMI DM age
oparallel
其中,ologit为条件Logistic回归代码,BMI为因变量,DM和age均为自变量,oparallel为平行性检验的代码,需额外下载,下载代码为:“ssc install oparallel”。

9b376eba0021448db0d244657a1e33a6.png
平行线检验结果显示:P=0.545>0.05,因此不能拒绝原假设,说明平行性假设是成立的,提示可以本研究可以运用有序Logistic回归模型进行分析。
第二步建立有序多分类回归
在命令框中输入ologit BMI i.DM age,or

d2440f797a164adeaf41f1e98d95afde.png
结果显示,年龄的显著性为0.019<0.05,拒绝原假设,因此年龄对BMI会产生显著性影响,or值为1.15,意味着年龄没增加一个单位,BMI提高一个等级的概率增加了15.02。
1.DM的显著性为0.689,水平上不呈现显著性,不能拒绝原假设,即DM对BMI不会产生显著性影响。
 


 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值