题、证明,对于任意互质的整数a,b,方程ax^2+by^2=z^2有无限多个整数解满足条件(x,y)=1。
证明:设x=ak^3-3bkm^2,y=3ak^2m-bm^3,z=ak^3+bm^2,其中k,m为整数,满足方程ax^2+by^2=z^3。
下面证明,有无限多个数对k,m,使方程(x,y)=1。
首先注意,如果k,m,a,b两两互质(根据条件,a与b互质),其中恰有一个为偶数,并且K与m都不能被3整除,这样才有x与y互质。下面给出理由,
由k,m,a,b两两互质(或互素),
(m,x)=(m,ak^3-3bkm^2)=(m,ak^3)=1,
(K,y)=(k,3ak^2m-bm^3)=(k,bm^3)=1,又因为a与b互质,记(a,b)=1,(m,k)=1,所以a与b中至少有一个不能被3整除,不妨设b不能被3整除,m,k中至少有一个不能被3整除,不妨设m不能被3整除。于是
(x,y)=(ak^3-3bkm^2,3ak^2m-bm^3)
=(k(ak^2-3bm^2),m(3aK^2-bm^2))
=(ak^2-3bm^2,3aK^2-bm^2)
=(3ak^2-9bm^2,3aK^2-bm^2)
=(8bm^2,3aK^2-bm^2)
=(bm^2,3aK^2)=1。
其次设a,b全不为0,取k=3丨ab|+1,m=6|ab|+1,容易验证,K,m,a,b满足题设条件。若a,b中有一个为0,不妨设b=0,此时k=m=1,x=z=a,b=0,也满足方程
ax^2+by^2=z^3。
所以,x=ak^3-3bkm^2,y=3ak^2m-bm^3,z=ak^3+bm^2,满足(x,y)=1,且使方程有无限多个整数解。(李扩继)