数论问题25

题、证明,对于任意互质的整数a,b,方程ax^2+by^2=z^2有无限多个整数解满足条件(x,y)=1。

 

证明:设x=ak^3-3bkm^2,y=3ak^2m-bm^3,z=ak^3+bm^2,其中k,m为整数,满足方程ax^2+by^2=z^3。

下面证明,有无限多个数对k,m,使方程(x,y)=1。

首先注意,如果k,m,a,b两两互质(根据条件,a与b互质),其中恰有一个为偶数,并且K与m都不能被3整除,这样才有x与y互质。下面给出理由,

由k,m,a,b两两互质(或互素),

(m,x)=(m,ak^3-3bkm^2)=(m,ak^3)=1,

(K,y)=(k,3ak^2m-bm^3)=(k,bm^3)=1,又因为a与b互质,记(a,b)=1,(m,k)=1,所以a与b中至少有一个不能被3整除,不妨设b不能被3整除,m,k中至少有一个不能被3整除,不妨设m不能被3整除。于是

(x,y)=(ak^3-3bkm^2,3ak^2m-bm^3)

=(k(ak^2-3bm^2),m(3aK^2-bm^2))

=(ak^2-3bm^2,3aK^2-bm^2)

=(3ak^2-9bm^2,3aK^2-bm^2)

=(8bm^2,3aK^2-bm^2)

=(bm^2,3aK^2)=1。

其次设a,b全不为0,取k=3丨ab|+1,m=6|ab|+1,容易验证,K,m,a,b满足题设条件。若a,b中有一个为0,不妨设b=0,此时k=m=1,x=z=a,b=0,也满足方程

ax^2+by^2=z^3。

所以,x=ak^3-3bkm^2,y=3ak^2m-bm^3,z=ak^3+bm^2,满足(x,y)=1,且使方程有无限多个整数解。(李扩继)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李扩继

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值