命题1,设a与b是任意给定的整数,证明,方程
x^2+10ax+5b+3=0
和x^2+10ax+5b-3=0
都没有整数解。
分析:这是一元二次方程,引进了参数a,b,判别式△是否为完全平方数,决定了方程的解是否为整数。二方程判别式分别为
△1=100a^2-4(5b+3)=4(25a^2-5b-3)
和△2=100a^2-4(5b-3)=4(25a^2-5b-3)
因为a,b∈Z,考查25a^2-5b±3是否为完全平方数?
一个数为完全平方数的特征:0^2=0,1^2=2,2^2=4,3^2=9,4^2=16,5^2=25,6^2=36,7^2=49,8^2=64,…,尾数(或个位数)必然为0,1,4,5,6,9这6个数,不会出现2,3,7,8这四个数。
25a^2-5b±3中25a^2-5b=5(5a^2-b)的尾数无论a,b为何整数,都是0,5,这样0±3,5±3计算的结果都不会出现0,1,4,5,6,9中任何一个。所以,判别式△1和
△2一定不会为完全平方数。即两方程无整数解。
命题2,证明,对于任意a,b∈Z,5a≥7b≥0,方程组
x+2y+3z+7u=a…(1)
y+2z+5u=b…(2)。
有非负整数解。
分析:、有非负整数解的含义是存在非负整数解。因为对于任意a,b∈Z,5a≥7b≥0,有5x+3y+z≥0,
由(2),y+2z=b-5u,令u=[b/5],[b/5]表示取不超过(b/5)的整数部分,如b=19,[19÷5]=3,b=-19,[-19÷5]=-4。那么,y+2z取值只有0,1,2,3,或4。
当y+2z=0时,取y=z=0,代入5x+3y+z≥0,x≥0,
当y+2z=1时,取z=0,y=1,代入5x+3y+z≥0,5x+3≥0,→
x≥-3/5。因为x∈Z,所以x≥0。
当y+2z=2时,取z=1,y=0,代入5x+3y+z≥0,5x+1≥0,→
x≥-1/5。因为x∈Z,所以x≥0,
当y+2z=3时,取z=1,y=1,代入5x+3y+z≥0,5x+4≥0,→
x≥-1/5。因为x∈Z,所以x≥0,
当y+2z=3时,取z=1,y=1,代入5x+3y+z≥0,5x+4≥0,→
x≥-4/5。因为x∈Z,所以x≥0,
当y+2z=4时,取z=2,y=0,代入5x+3y+z≥0,5x+2≥0,→
x≥-2/5。因为x∈Z,所以x≥0,
综上,在各种情况下,总存在x,y,z,u为非负整数解满足原方程组。
命题3,求方程组
x+y+z=0…(1)
x^3+y^3+z^3=-18…(2)
的整数解。
分析:消元法,由(1),z=-(x+y)代入(2)式,消去z,再化简得
xy(x+y)=-6,即xyz=-6。所求的是方程组的整数解,这说明,原方程组的整数解只能是6的因子数±1,±2,±3,±6,且其中有且只有一个因子是负数,并且这个负数的绝对值是最大的,据此逐一验证,便可求出所有的解为(x,y,z):
(-3,1,2),(-3,2,1),(2,-3,1),(1,-3,2),(2,1,-3),(1,2,-3)
命题4,有多少对不超过100的数p,q∈N,使得方程x^5+px+q=0有有理数解?
分析:对题意的理解尝试一个数就明白了,如p=q=1,就是一对取值,并且要满足使方程x^5+x+1=0有有理数解?
因为p,q∈{1,2,…,100},方程系数都是正整数,所以,当x≥0时,x^5+px+q>0,说明方程的根x不可能为实数。
当x<0时,因为负数x^5的绝对值随x增大而增大很快,x不可能取值很小值,2^5=32,3^5=243,-3^5-3p+q<0,注意q≤100,所以,-3<x<0。
我们知道整系数的一元n次方程x^n+ax^(n-1)+…+bx+c=0的每一个实数根只能是无理数或有理数两种情况,当x^n的系数为1时,实数根只能是无理数或整数。如一元二次方程x^2-3x+2=0的实数根要么是整数,要么是无理数,判别式的√△不是无理数就是整除两种情况,此处△=9-4x2=1,√1=1,这个一元二次方程两根(3+1)/2=2,(3-1)/2=1。
因为,方程x^5+px+q=0的根不是整数就是无理数,若求有理数根,由-3<x<0→x=-1,-2。
当x=-1时,-1-p+q=0,即q=p+1,由p,q∈{1,2,…,100}知,(p,q)取值有99种。
当x=-2时,代入方程-32-2p+q=0,或
q=2p+32,(p,q)取值有34种。所以,
(p,q)取值总有99十34=133种。(李扩继)