数论问题55

命题1,求方程

 

(1+1÷x)^(x+1)=(1十1÷2023)^2023的整数解。

 

 

 

解:设整数x满足方程。则

 

[(1+x)^(x+1)]/x^(x+1)

 

=[2024^2023]/2023^2023。

 

上式两端都是既约分数,因此

 

x^(x+1)=2023^2023。

 

如果X≥2023,则x^(X+1)>2023^2023。

 

如果0<X<2023,则

 

x^(X+1)<2023^2023。

 

如果x<-1,记y=-(X+1),由原方程得,

 

y^y=2023^2023。因此,y=2023,→x=-2024。经检验,x=-2024是原方程的整数解。(李扩继)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李扩继

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值