命题1,求方程
(1+1÷x)^(x+1)=(1十1÷2023)^2023的整数解。
解:设整数x满足方程。则
[(1+x)^(x+1)]/x^(x+1)
=[2024^2023]/2023^2023。
上式两端都是既约分数,因此
x^(x+1)=2023^2023。
如果X≥2023,则x^(X+1)>2023^2023。
如果0<X<2023,则
x^(X+1)<2023^2023。
如果x<-1,记y=-(X+1),由原方程得,
y^y=2023^2023。因此,y=2023,→x=-2024。经检验,x=-2024是原方程的整数解。(李扩继)