数论问题66

命题1,设数x(i)∈N,求

 

x(1)^4+x(2)^4+…+x(14)^4=1599的整数解。

 

 

 

解:当x(ⅰ)为偶数时,x(i)^4必能被16整除。当x(i)为奇数时,x(i)^4被16余1。而

 

1599=1600-1,即1599被16除余15。但是x(1)^4+x(2)^4+…+x(14)^4被16除,这14个加数,每个加数被16除余0或1,无论如何余数的和都不会等于15。所以,原方程无整数解。

 

命题2,设a和b是任意给定的整数,证明方程

 

x^2+10ax+5b+3=0,x^2+10ax+5b-3=0,都没有整数解。

 

 

证明:原方程的两根为

 

x=-5a±√(25a^2-5b±3)。

 

如果x为整数,则√(25a^2-5b±3)为整数,因此(25a^2-5b±3)为完全平方数,由于25a^2-5b=5(5a^2-b)的末位数为0或5,所以,(25a^2-5b±3)的末位数只能是2,3,7或8,但是,一个数是完全平方数,它的末位数0,1,4,5,6或9,矛盾。所以原方程没有整数解。(李扩继)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李扩继

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值