命题1,设数x(i)∈N,求
x(1)^4+x(2)^4+…+x(14)^4=1599的整数解。
解:当x(ⅰ)为偶数时,x(i)^4必能被16整除。当x(i)为奇数时,x(i)^4被16余1。而
1599=1600-1,即1599被16除余15。但是x(1)^4+x(2)^4+…+x(14)^4被16除,这14个加数,每个加数被16除余0或1,无论如何余数的和都不会等于15。所以,原方程无整数解。
命题2,设a和b是任意给定的整数,证明方程
x^2+10ax+5b+3=0,x^2+10ax+5b-3=0,都没有整数解。
证明:原方程的两根为
x=-5a±√(25a^2-5b±3)。
如果x为整数,则√(25a^2-5b±3)为整数,因此(25a^2-5b±3)为完全平方数,由于25a^2-5b=5(5a^2-b)的末位数为0或5,所以,(25a^2-5b±3)的末位数只能是2,3,7或8,但是,一个数是完全平方数,它的末位数0,1,4,5,6或9,矛盾。所以原方程没有整数解。(李扩继)