公元13世纪,在意大利有一位天才的数学家名字叫斐波纳奇,他在一本《算盘之书》的著作里记载了这样一道数学题:有一对兔子,每一个月可以生下一对小兔子,而且假定小兔子在出生的第二个月便有生育能力,那么过一年后,问一共能有多少对兔子?假设每产一对必须是一雌兔一雄兔,并且所有的兔子都能进行相互交配,所生下来的兔子都能保证成活率。
究竟有多少对呢?我们不妨计算一下,一对兔子,在一个月后生出了一对,总数是两对。而在这两对当中,只有第一对兔子有生育能力,因而两个月后一共有三对兔子,三个月后第一第二对兔子都有生育能力,因此又新出生两对兔子,总共有五对兔子,这样依此类推,经过一年(十二个月)后,兔子总数为233对。
即兔子的对数依次为:
1,1,2,3,5,8,13,21,34,55,89,144,233,研究一下这个数列,我们会惊奇地发现它有许多有趣的性质:从第三项起,每一项的数都是紧挨着它前面的两项的数字之和。即
3=2+1;5=2+3;8=3+5;……233=89+144,
这个数列的发现对人类数学及自然科学的发展具有重大的意义,人们为了纪念大数学家斐波纳奇,因而把此数列命名为斐波纳奇数列。斐波纳奇数列在生活中有着广泛的运用。
斐波那契数列(Fibonacci sequence),又称黄金分割数列。
定义与公式
1)定义:斐波那契数列指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*),即从第三项开始,每一项都等于前两项之和。
2)通项公式:
F(n)={[(1+√5)/2]^n-[(1-√5)/2]^n}/√5。
证明方法1(数学归纳法):当n=0时,F(0)=0;当n=1时,F(1)=1,命题成立。
假设,n=K和n=K-1时命题成立。即
F(K)={[(1+√5)/2]^K-[(1-√5)/2]^K}/√5,
F(K-1)={[(1+√5)/2]^(K-1)-[(1-√5)/2]^(K-1)}/√5。那么,
{F(K)+F(K-1)}√5=[(1+√5)/2]^K-[(1-√5)/2]^K十[(1+√5)/2]^(K-1)-[(1-√5)/2]^(K-1)
=[(1+√5)/2]^(K-1)[(1+√5)/2+1]
-[(1-√5)/2]^(K-1)[(1-√5)/2十1]
=[(1+√5)/2]^(K+1)-[(1-√5)/2]^(K+1)
,所以,F(K+1)=F(K)+F(K-1)成立。所以
对于一切n,命题成立。
3)相关性质
①黄金分割比:随着数列项数的增加,相邻两项的比值越来越接近黄金分割比(1+√5)/2=1.618…。
②求和公式:前n项和S{n}=F(n + 2)-1。
证明过程:
斐波那契数列前n项和S{n}=F(0)+F(1)+F(2)+…+F(n)。
利用斐波那契数列的递推关系进行推导
已知F(0)=0,F(2)=F(1)+F(0)=1 + 0 = 1,F(3)=F(2)+F(1),F(4)=F(3)+F(2),…,F(n + 2)=F(n + 1)+F(n)。
从F(n + 2)开始逐步展开:
F(n + 2)=F(n + 1)+F(n)。
把F(n + 1)=F(n)+F(n - 1)代入上式,得到F(n + 2)=F(n)+F(n - 1)+F(n)。
再把F(n)=F(n - 1)+F(n - 2)代入,得到F(n + 2)=F(n - 1)+F(n - 2)+F(n - 1)+F(n)。
以此类推,不断将后一项用前两项的和展开。
最终展开可得F(n + 2)=F(0)+F(1)+F(2)+…+F(n)+F(1)。
因为F(0)=0,所以F(n + 2)=S{n}+1。
得出结论
移项可得S_{n}=F(n + 2)-1。
综上,斐波那契数列前n项和S{n}=F(n + 2)-1得证。
4)应用领域
①自然界:许多植物的生长规律符合斐波那契数列,如向日葵花盘上的种子排列、菠萝的鳞片排列等,这样的排列方式能使植物在生长过程中更好地利用空间和阳光。
②金融市场:斐波那契数列在金融市场分析中被广泛应用,如黄金分割比例0.618就是由斐波那契数列推导而来,分析师常用其来预测市场趋势、判断价格支撑位和阻力位等。
③计算机科学:在算法设计中,斐波那契数列可用于优化某些搜索和排序算法,如斐波那契查找算法。在数据结构中,也可以用斐波那契数列来分析一些树形结构的性质。(李扩继)