数论问题73

命题1,求方程

 

1!+2!+…+(x+1)!=y^(z+1)的自然数解。

 

 

 

解,设f(x)=1!+2!+…+(x+1)!

 

则f(1)=3,f(2)=1+2+6=9,

 

f(3)=f(2)+24=33。当x>3时,

 

f(x)=f(3)+5!+…+(x+1)!被5除必余3。

 

又因为

 

时任意k∈Z,

 

(5K)^2被5除余0,

 

(5k±1)^2被5除余1,

 

(5k±2)^2被5除余4,所以,

 

f(x)不是整数的平方。

 

因此,当z=1时,任意自然数x≠2与y都不满足f(x)=y^(z+1)。

 

下面再证明,当x≥2时,f(x)=y^(z+1)也不能满足。

 

可直接验证当x=1,2,3,4,5,7时,f(x)都被3整除,但不能被27整除,因此不能表成y^(z+1),z>1。

 

当x>7时,

 

f(x)=f(7)+9!十…十(x十1)!被27除余f(7),

 

当x=6时,f(6)=5913=81*73。

 

它们都不能表成y^(z+1),于是方程有唯一的自然数解:x=2,y=3,z=1。(李扩继)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李扩继

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值