数论问题75

命题,证明:存在K∈N,使得对于每个n∈N,Kx2^n+1都是合数。

 

 

 

证明:设n=2^m,当m=0,1,2,3,4时,a(m)=2^(2^m)+1都是素数。

 

a(0)=2+1=3,a(1)=2^2+1=5,a(2)=2^4+1=17,a(3)=2^8+1=258,a(4)=2^16+1=65537。

 

a(5)=2^(2^5)+1=2^32+1

 

=(2^16)^2-1+2

 

=(2^16+1)(2^8+)(2^4+)(2^2+1)(2+1)(2-1)+2

 

=a(0)a(1)a(2)a(3)a(4)+2

 

=4294967297

 

=6700417X641。于是,

 

a(5)是合数,且与每个a(0),a(1),a(2),a(3),a(4)互素。

 

而a(6)=a(0)a(1)a(2)a(3)a(4)a5)+2,所以

 

a(0),a(1),a(2),a(3),a(4),a(5),a(6),互素。那么,由中国剩余定理,总存在K∈Z,使被a(m)(0≤m≤5)除余1,且被a(6)除余-1。

 

若令n=2^mp(0≤m≤4),p为奇数,则有

 

K2^n+1被a(m)除余2^n+1。

 

2^n+1=2^(2^mp)+1=[a(m)-1]^p+1,

 

被a(m)除余(-1)^p+1,因为p为奇数,所以,a(m)整除K2^n+1。即

 

K2^n+1为合数。 (李扩继)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李扩继

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值