斐波那契数列最大公约数 蓝桥杯 c++代码

斐波那契数列满足:F1=1,F2=1,从F3开始有Fn=Fn-1 + Fn-2;

请计算GCD(F2020,F520),其中GCD(A,B)表示求A和B的最大公约数。

根据斐波那契数列最大公约数定理

GCD(Fn,Fm) = F(GCD(Fn,Fm))

#include <iostream>
using namespace std;

long long fibo(int m)
{
	if(m>=3){
		return fibo(m-1)+fibo(m-2);
	}
	else
	{
		return 1;
	}
}

int GCD(int x,int y)
{
	if(x%y != 0)
	{
		return GCD(y,x%y);
	}
	else 
	{
		return y;
	}
	
}

int main()
{
	int f1,f2;
	int i;
	int fn=0;
	long long ans1=0,ans2=0;
	ans1=GCD(2020,520);
	ans2=fibo(ans1);
	
	cout<<ans2;
	return 0;
}

  • 7
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值