面向不平稳工业时序数据的预测(持续学习)

出处:IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2024(CCF C期刊、中科院一区)

一  提出动机

1. 挑战:工业数据动态变化,导致:数据分布漂移 (data distribution drift)

Continual learning (lifelong learning):指:学习系统随时间推移,动态更新模型知识库,而不忘记过去重要信息的能力,有效克服灾难性遗忘 (catastrophic forgetting) 的挑战。此外,增量学习方法避免了从零开始建模的高计算成本。

二  Methodology

A. Hint-Based Network Parameter Learning

参数说明: 

B. Dual-Buffer Design

动机:“基于提示的网络参数优化” 使用来自缓冲区(Memory Buffer)的样本作为优化新任务的先验约束 →

可能将限制模型习得新任务的能力,特别是:当任务相似(模型可能倾向使用旧任务策略,来处理新任务)或序列很长(缓冲区中累积的样本数量增加)时;

“双缓冲设计” 平衡了:学习新任务的可塑性(Soft Memory Buffer)、记忆旧任务的稳定性(Memory Buffer)

C.  Time-Sensitive Activation Function

三 实验结果

四 评测指标 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值