无鱼Omega-3成分行业调研报告 - 市场现状分析与发展前景预测

无鱼Omega-3成分市场的企业竞争态势

     该报告涉及的主要国际市场参与者有Aker BioMarine、Axellus、BASF SE、DSM、Omega Protein Corporation、GC Rieber Oils AS、Lonza等。这些参与者的市场份额、收入、公司概况和SWOT分析都包含在无鱼Omega-3成分市场调研报告中。

产品分类:

α-亚麻酸(ALA)

二十碳五烯酸(EPA)

二十二碳六烯酸(DHA)

应用领域:

食品工业

饮料行业

膳食补充剂

婴儿奶粉

医药品

动物饲料

【出版日期】2022-02

【出版商】湖南贝哲斯信息咨询有限公司

报告指南(共十五个章节): 

第一章:无鱼Omega-3成分市场发展概述、发展历程、中国市场以及各细分市场规模与增长率分析。 

第二章:PEST分析、国内外市场竞争现状、市场中存在的问题和对策以及COVID-19对行业的影响分析。 

第三章:无鱼Omega-3成分行业上下游产业链分析。 

第四章:无鱼Omega-3成分细分类型分析(发展趋势、产品类型、竞争格局、以及市场规模分析)。 

第五章:无鱼Omega-3成分市场最终用户分析(下游客户端、竞争格局、市场潜力、以及市场规模分析)。 

第六章:中国主要地区无鱼Omega-3成分产量、产值、销量、与销量值分析。 

第七章至第十三章:依次对华北、华中、华南、华东、东北、西南、西北地区无鱼Omega-3成分主要类型(产量、产量份额)以及最终用户格局(销量、销量份额)分析。 

第十四章:介绍了领先企业的发展现状,涵盖公司简介、最新发展、市场表现(收入、价格、利润分析)、以及产品和服务介绍等方面。 

第十五章:研究结论、发展策略、投资方向与方式建议。 

目录

第一章 2016-2026年中国无鱼Omega-3成分行业总概

1.1 中国无鱼Omega-3成分行业发展概述

1.2 中国无鱼Omega-3成分行业发展历程

1.3 2016-2026年中国无鱼Omega-3成分行业市场规模

1.4 无鱼Omega-3成分细分类型的市场分析

1.4.1 2016-2026年中国α-亚麻酸(ALA)市场规模和增长率

1.4.2 2016-2026年中国二十碳五烯酸(EPA)市场规模和增长率

1.4.3 2016-2026年中国二十二碳六烯酸(DHA)市场规模和增长率

1.5 无鱼Omega-3成分在不同应用领域的市场规模分析

1.5.1 2016-2026年中国食品工业领域的市场规模和增长率

1.5.2 2016-2026年中国饮料行业领域的市场规模和增长率

1.5.3 2016-2026年中国膳食补充剂领域的市场规模和增长率

1.5.4 2016-2026年中国婴儿奶粉领域的市场规模和增长率

1.5.5 2016-2026年中国医药品领域的市场规模和增长率

1.5.6 2016-2026年中国动物饲料领域的市场规模和增长率

1.6 中国各地区无鱼Omega-3成分市场规模分析

1.6.1 2016-2026年华北无鱼Omega-3成分市场规模和增长率

1.6.2 2016-2026年华中无鱼Omega-3成分市场规模和增长率

1.6.3 2016-2026年华南无鱼Omega-3成分市场规模和增长率

1.6.4 2016-2026年华东无鱼Omega-3成分市场规模和增长率

1.6.5 2016-2026年东北无鱼Omega-3成分市场规模和增长率

1.6.6 2016-2026年西南无鱼Omega-3成分市场规模和增长率

1.6.7 2016-2026年西北无鱼Omega-3成分市场规模和增长率

第二章 中国无鱼Omega-3成分行业发展环境

2.1 行业发展环境分析

2.1.1 行业技术变化分析

2.1.2 产业组织创新分析

2.1.3 社会习惯变化分析

2.1.4 政府政策变化分析

2.1.5 经济全球化影响

2.2 国内外行业竞争分析

2.2.1 2020年国内外无鱼Omega-3成分市场现状及竞争对比分析

2.2.2 2020年中国无鱼Omega-3成分市场现状及竞争分析

2.2.3 2020年中国无鱼Omega-3成分市场集中度分析

2.3 中国无鱼Omega-3成分行业发展中存在的问题及对策

2.3.1 行业发展制约因素

2.3.2 行业发展考虑要素

2.3.3 行业发展措施建议

2.3.4 中小企业发展战略

2.4 COVID-19对无鱼Omega-3成分行业的影响和分析

第三章 无鱼Omega-3成分行业产业链分析

3.1 无鱼Omega-3成分行业产业链

3.2 无鱼Omega-3成分上游行业分析

3.2.1 上游行业发展现状

3.2.2 上游行业发展预测

3.2.3 上游行业对无鱼Omega-3成分行业的影响分析

3.3 无鱼Omega-3成分下游行业分析

3.3.1 下游行业发展现状

3.3.2 下游行业发展预测

3.3.3 下游行业对无鱼Omega-3成分行业的影响分析

第四章 无鱼Omega-3成分细分类型市场

4.1 细分类型发展趋势

4.2 主要供应商的商业产品类型

4.3 主要细分类型的竞争格局分析

4.4 无鱼Omega-3成分行业主要细分类型的市场规模分析

4.4.1 α-亚麻酸(ALA)市场规模和增长率

4.4.2 二十碳五烯酸(EPA)市场规模和增长率

4.4.3 二十二碳六烯酸(DHA)市场规模和增长率

第五章 无鱼Omega-3成分市场最终用户细分

5.1 最终用户的下游客户端分析

5.2 主要最终用户的竞争格局分析

5.3 主要最终用户的市场潜力分析

5.4 无鱼Omega-3成分主要最终用户市场规模分析

5.4.1 无鱼Omega-3成分在食品工业领域的市场规模和增长率

5.4.2 无鱼Omega-3成分在饮料行业领域的市场规模和增长率

5.4.3 无鱼Omega-3成分在膳食补充剂领域的市场规模和增长率

5.4.4 无鱼Omega-3成分在婴儿奶粉领域的市场规模和增长率

5.4.5 无鱼Omega-3成分在医药品领域的市场规模和增长率

5.4.6 无鱼Omega-3成分在动物饲料领域的市场规模和增长率

第六章 中国主要地区无鱼Omega-3成分市场分析

6.1 中国主要地区无鱼Omega-3成分产量与产值分析

6.2 中国主要地区无鱼Omega-3成分销量与销量值分析

第七章 华北地区无鱼Omega-3成分市场分析

7.1 华北地区无鱼Omega-3成分主要类型格局分析

7.2 华北地区无鱼Omega-3成分主要最终用户的格局分析

第八章 华中地区无鱼Omega-3成分市场分析

8.1 华中地区无鱼Omega-3成分主要类型格局分析

8.2 华中地区无鱼Omega-3成分主要最终用户格局分析

第九章 华南地区无鱼Omega-3成分市场分析

9.1 华南地区无鱼Omega-3成分主要类型格局分析

9.2 华南地区无鱼Omega-3成分主要最终用户格局分析

第十章 华东地区无鱼Omega-3成分市场分析

10.1 华东地区无鱼Omega-3成分主要类型格局分析

10.2 华东地区无鱼Omega-3成分主要最终用户格局分析

第十一章 东北地区无鱼Omega-3成分市场分析

11.1 东北地区无鱼Omega-3成分主要类型格局分析

11.2 东北地区无鱼Omega-3成分主要最终用户格局分析

第十二章 西南地区无鱼Omega-3成分市场分析

12.1 西南地区无鱼Omega-3成分主要类型格局分析

12.2 西南地区无鱼Omega-3成分主要最终用户格局分析

第十三章 西北地区无鱼Omega-3成分市场分析

13.1 西北地区无鱼Omega-3成分主要类型格局分析

13.2 西北地区无鱼Omega-3成分主要最终用户格局分析

第十四章 主要企业

14.1 Aker BioMarine

14.1.1 Aker BioMarine-公司简介和最新发展

14.1.2 市场表现

14.1.3 产品服务和介绍

14.2 Axellus

14.2.1 Axellus-公司简介和最新发展

14.2.2 市场表现

14.2.3 产品服务和介绍

14.3 BASF SE

14.3.1 BASF SE-公司简介和最新发展

14.3.2 市场表现

14.3.3 产品服务和介绍

14.4 DSM

14.4.1 DSM-公司简介和最新发展

14.4.2 市场表现

14.4.3 产品服务和介绍

14.5 Omega Protein Corporation

14.5.1 Omega Protein Corporation-公司简介和最新发展

14.5.2 市场表现

14.5.3 产品服务和介绍

14.6 GC Rieber Oils AS

14.6.1 GC Rieber Oils AS-公司简介和最新发展

14.6.2 市场表现

14.6.3 产品服务和介绍

14.7 Lonza

14.7.1 Lonza-公司简介和最新发展

14.7.2 市场表现

14.7.3 产品服务和介绍

第十五章 研究结论及投资建议

15.1 无鱼Omega-3成分行业研究结论

15.2 无鱼Omega-3成分行业投资建议

15.2.1 行业发展策略建议

15.2.2 行业投资方向建议

15.2.3 行业投资方式建议

图表目录

图 2016-2026年中国无鱼Omega-3成分行业市场规模

图 2016-2026年中国α-亚麻酸(ALA)市场规模和增长率

图 2016-2026年中国二十碳五烯酸(EPA)市场规模和增长率

图 2016-2026年中国二十二碳六烯酸(DHA)市场规模和增长率

图 2016-2026年中国无鱼Omega-3成分在食品工业领域的市场规模和增长率

图 2016-2026年中国无鱼Omega-3成分在饮料行业领域的市场规模和增长率

图 2016-2026年中国无鱼Omega-3成分在膳食补充剂领域的市场规模和增长率

图 2016-2026年中国无鱼Omega-3成分在婴儿奶粉领域的市场规模和增长率

图 2016-2026年中国无鱼Omega-3成分在医药品领域的市场规模和增长率

图 2016-2026年中国无鱼Omega-3成分在动物饲料领域的市场规模和增长率

图 2016-2026年华北无鱼Omega-3成分市场规模和增长率

图 2016-2026年华中无鱼Omega-3成分市场规模和增长率

图 2016-2026年华南无鱼Omega-3成分市场规模和增长率

图 2016-2026年华东无鱼Omega-3成分市场规模和增长率

图 2016-2026年东北无鱼Omega-3成分市场规模和增长率

图 2016-2026年西南无鱼Omega-3成分市场规模和增长率

图 2016-2026年西北无鱼Omega-3成分市场规模和增长率

图 无鱼Omega-3成分行业产业链

表 2020年主要供应商的商业产品类型

图 2016年主要细分类型市场份额分布

图 2020年主要细分类型市场份额分布

图 2016-2021年α-亚麻酸(ALA)市场规模和增长率

图 2016-2021年二十碳五烯酸(EPA)市场规模和增长率

图 2016-2021年二十二碳六烯酸(DHA)市场规模和增长率

图 2016年主要最终用户市场份额分布

图 2020年主要最终用户市场份额分布

图 2016-2021年无鱼Omega-3成分在食品工业领域的市场规模和增长率

图 2016-2021年无鱼Omega-3成分在饮料行业领域的市场规模和增长率

图 2016-2021年无鱼Omega-3成分在膳食补充剂领域的市场规模和增长率

图 2016-2021年无鱼Omega-3成分在婴儿奶粉领域的市场规模和增长率

图 2016-2021年无鱼Omega-3成分在医药品领域的市场规模和增长率

图 2016-2021年无鱼Omega-3成分在动物饲料领域的市场规模和增长率

表 2016-2021年中国主要地区无鱼Omega-3成分产量

表 2016-2021年中国主要地区无鱼Omega-3成分产量份额

图 2016-2021年中国主要地区无鱼Omega-3成分产量份额

表 2016-2021年中国主要地区无鱼Omega-3成分产值

表 2016-2021年中国主要地区无鱼Omega-3成分产值份额

图 2016-2021年中国主要地区无鱼Omega-3成分产值份额

表 2016-2021年中国主要地区无鱼Omega-3成分销量

表 2016-2021年中国主要地区无鱼Omega-3成分销量份额

图 2016-2021年中国主要地区无鱼Omega-3成分销量份额

表 2016-2021年中国主要地区无鱼Omega-3成分销量值

表 2016-2021年中国主要地区无鱼Omega-3成分销量值份额

图 2016-2021年中国主要地区无鱼Omega-3成分销量值份额

表 2016-2021年华北地区无鱼Omega-3成分主要类型产量

表 2016-2021年华北地区无鱼Omega-3成分主要类型产量份额

图 2016-2021年华北地区无鱼Omega-3成分主要类型产量份额

表 2016-2021年华北地区无鱼Omega-3成分主要最终用户销量

表 2016-2021年华北地区无鱼Omega-3成分主要最终用户销量份额

图 2016-2021年华北地区无鱼Omega-3成分主要最终用户销量份额

表 2016-2021年华中地区无鱼Omega-3成分主要类型产量

表 2016-2021年华中地区无鱼Omega-3成分主要类型产量份额

图 2016-2021年华中地区无鱼Omega-3成分主要类型产量份额

表 2016-2021年华中地区无鱼Omega-3成分主要最终用户销量

表 2016-2021年华中地区无鱼Omega-3成分主要最终用户销量份额

图 2016-2021年华中地区无鱼Omega-3成分主要最终用户销量份额

表 2016-2021年华南地区无鱼Omega-3成分主要类型产量

表 2016-2021年华南地区无鱼Omega-3成分主要类型产量份额

图 2016-2021年华南地区无鱼Omega-3成分主要类型产量份额

表 2016-2021年华南地区无鱼Omega-3成分主要最终用户销量

表 2016-2021年华南地区无鱼Omega-3成分主要最终用户销量份额

图 2016-2021年华南地区无鱼Omega-3成分主要最终用户销量份额

表 2016-2021年华东地区无鱼Omega-3成分主要类型产量

表 2016-2021年华东地区无鱼Omega-3成分主要类型产量份额

图 2016-2021年华东地区无鱼Omega-3成分主要类型产量份额

表 2016-2021年华东地区无鱼Omega-3成分主要最终用户销量

表 2016-2021年华东地区无鱼Omega-3成分主要最终用户销量份额

图 2016-2021年华东地区无鱼Omega-3成分主要最终用户销量份额

表 2016-2021年东北地区无鱼Omega-3成分主要类型产量

表 2016-2021年东北地区无鱼Omega-3成分主要类型产量份额

图 2016-2021年东北地区无鱼Omega-3成分主要类型产量份额

表 2016-2021年东北地区无鱼Omega-3成分主要最终用户销量

表 2016-2021年东北地区无鱼Omega-3成分主要最终用户销量份额

图 2016-2021年东北地区无鱼Omega-3成分主要最终用户销量份额

表 2016-2021年西南地区无鱼Omega-3成分主要类型产量

表 2016-2021年西南地区无鱼Omega-3成分主要类型产量份额

图 2016-2021年西南地区无鱼Omega-3成分主要类型产量份额

表 2016-2021年西南地区无鱼Omega-3成分主要最终用户销量

表 2016-2021年西南地区无鱼Omega-3成分主要最终用户销量份额

图 2016-2021年西南地区无鱼Omega-3成分主要最终用户销量份额

表 2016-2021年西北地区无鱼Omega-3成分主要类型产量

表 2016-2021年西北地区无鱼Omega-3成分主要类型产量份额

图 2016-2021年西北地区无鱼Omega-3成分主要类型产量份额

表 2016-2021年西北地区无鱼Omega-3成分主要最终用户销量

表 2016-2021年西北地区无鱼Omega-3成分主要最终用户销量份额

图 2016-2021年西北地区无鱼Omega-3成分主要最终用户销量份额

表Aker BioMarine-公司简介和最新发展

表2016-2021年Aker BioMarine无鱼Omega-3成分收入、价格、利润分析

表Axellus-公司简介和最新发展

表2016-2021年Axellus无鱼Omega-3成分收入、价格、利润分析

表BASF SE-公司简介和最新发展

表2016-2021年BASF SE无鱼Omega-3成分收入、价格、利润分析

表DSM-公司简介和最新发展

表2016-2021年DSM无鱼Omega-3成分收入、价格、利润分析

表Omega Protein Corporation-公司简介和最新发展

表2016-2021年Omega Protein Corporation无鱼Omega-3成分收入、价格、利润分析

表GC Rieber Oils AS-公司简介和最新发展

表2016-2021年GC Rieber Oils AS无鱼Omega-3成分收入、价格、利润分析

表Lonza-公司简介和最新发展

表2016-2021年Lonza无鱼Omega-3成分收入、价格、利润分析

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: PSO-BP算法是基于粒子群优化和BP神经网络算法的结合,可以用于预测时间序列问题、分类问题、回归问题等。下面是一个PSO-BP预测的简单实例代码: 1. 导入所需的库和数据 ```python import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error from pso_bp import PSO_BP data = np.array([1, 3, 2, 4, 5, 7, 6, 8, 9, 10]) ``` 2. 数据预处理 ```python scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(data.reshape(-1, 1)) ``` 3. 划分训练集和测试集 ```python train_size = int(len(scaled_data) * 0.7) train_data = scaled_data[:train_size] test_data = scaled_data[train_size:] ``` 4. 生成输入和输出数据 ```python def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset) - look_back): dataX.append(dataset[i:(i + look_back), 0]) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY) look_back = 3 trainX, trainY = create_dataset(train_data, look_back) ``` 5. 定义模型参数 ```python n_inputs = 3 n_hidden = 10 n_outputs = 1 ``` 6. 定义PSO-BP模型 ```python model = PSO_BP(n_inputs, n_hidden, n_outputs) ``` 7. 训练模型 ```python epochs = 100 for i in range(epochs): model.train(trainX, trainY) ``` 8. 测试模型 ```python testX, testY = create_dataset(test_data, look_back) predicted = model.predict(testX) predicted = scaler.inverse_transform(predicted) testY = scaler.inverse_transform(testY.reshape(-1, 1)) mse = mean_squared_error(testY, predicted) print('MSE:', mse) ``` 9. 可视化结果 ```python train_predict = model.predict(trainX) train_predict = scaler.inverse_transform(train_predict) trainY = scaler.inverse_transform(trainY.reshape(-1, 1)) plt.plot(trainY, label='Real Training Data') plt.plot(train_predict, label='Predicted Training Data') plt.legend() plt.show() test_predict = model.predict(testX) test_predict = scaler.inverse_transform(test_predict) plt.plot(testY, label='Real Test Data') plt.plot(test_predict, label='Predicted Test Data') plt.legend() plt.show() ``` 以上代码只是一个简单的PSO-BP预测的实例,实际应用中需要根据具体问题进行参数调整和模型优化。 ### 回答2: PSO-BP神经网络是一种结合了粒子群算法和BP神经网络的预测方法。这种方法通过优化BP神经网络的训练过程来提高预测的准确性。下面是一份使用Python语言实现的PSO-BP预测的示例代码: ``` # 导入所需的库 import numpy as np from sklearn.neural_network import MLPRegressor from pyswarm import pso # PSO算法库 # 定义训练数据和测试数据 train_data = np.array([[1, 1, 1, 0], [0, 0, 1, 1], [0, 1, 0, 1], [1, 1, 0, 1]]) train_label = np.array([1, 0, 0, 1]) test_data = np.array([[1, 0, 1, 0], [0, 1, 0, 0]]) test_label = np.array([1, 0]) # 定义PSO-BP神经网络 def pso_bp_func(w): MLP = MLPRegressor(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(3,), random_state=1) MLP.fit(train_data, train_label, weights=w) return MLP.predict(test_data) # 定义PSO算法的限制条件 def pso_bounds(): weights = [] for i in range(3): layer_weights = [] for j in range(4): row_weights = [] for k in range(3): row_weights.append((-1, 1)) layer_weights.append(row_weights) weights.append(layer_weights) return np.array(weights).ravel() # 应用PSO算法进行优化 xopt, fopt = pso(pso_bp_func, pso_bounds()) # 输出预测结果 print("预测结果:", pso_bp_func(xopt)) ``` 在上述代码中,我们首先导入了所需的库。然后定义了示例中的训练数据和测试数据。 接下来,我们定义了一个用于PSO-BP神经网络训练的函数pso_bp_func。该函数会调用scikit-learn库中的MLPRegressor类来训练神经网络,并返回对测试数据的预测值。 在定义PSO算法的限制条件时,我们使用了一个较为复杂的形式。我们需要为神经网络的层级、行和列分别设置上下限,以确保神经网络的权重在一个范围内。 最后,我们将优化函数pso_bp_func和限制条件pso_bounds作为参数传递给pyswarm算法库中的pso函数进行优化。pso函数将返回优化后的最优解。 需要注意的是,上述代码中的示例数据和参数设置都是比较简单的。在实际应用中,我们需要根据具体问题和数据特征来进行选择和调整。 ### 回答3: PSO-BP预测是一种用于时间序列预测的混合模型,结合了粒子群优化(PSO)和BP神经网络的特点,既可以对非线性关系进行建模,又具有优秀的收敛性能。以下是一个简单的PSO-BP预测的实例代码。 ``` # 导入需要的库 import numpy as np from sklearn import preprocessing from sklearn.neural_network import MLPRegressor from pyswarm import pso # 加载数据并进行归一化处理 data = np.loadtxt('data.txt', delimiter=',') scaler = preprocessing.MinMaxScaler(feature_range=(-1, 1)) data_scaled = scaler.fit_transform(data) # 构造训练集和测试集 train_size = int(len(data_scaled) * 0.8) train_data = data_scaled[:train_size] test_data = data_scaled[train_size:] # 定义PSO-BP模型 def pso_bp_model(x, train_data): # 设置BP神经网络参数 hidden_layer_sizes = (int(x[0]),) learning_rate_init = x[1] max_iter = int(x[2]) # 训练BP神经网络 bp_regressor = MLPRegressor(hidden_layer_sizes=hidden_layer_sizes, learning_rate_init=learning_rate_init, max_iter=max_iter) bp_regressor.fit(train_data[:, :-1], train_data[:, -1]) # 返回测试误差 y_pred = bp_regressor.predict(test_data[:, :-1]) mse = np.mean((test_data[:, -1] - y_pred) ** 2) return mse # 设置PSO参数和范围 lb = [1, 0.0001, 1] ub = [20, 0.1, 1000] options = {'c1': 0.5, 'c2': 0.3, 'w': 0.9} # 运行PSO优化 xopt, fopt = pso(pso_bp_model, lb, ub, args=(train_data,), swarmsize=50, omega=0.5, phip=0.5, phig=0.5, maxiter=100, minstep=1e-8) # 输出优化结果 print('优化参数: [%.2f, %.4f, %d], MSE = %.6f' % (xopt[0], xopt[1], int(xopt[2]), fopt)) ``` 该代码中首先使用`MinMaxScaler`进行数据的归一化处理,然后将数据分成训练集和测试集。接下来定义了PSO-BP模型的损失函数`pso_bp_model`,其中使用了`MLPRegressor`构建BP神经网络,参数由PSO优化得到,最后返回测试误差。使用`pso`函数对损失函数进行优化,得到最优化参数。最后输出优化结果,包括最优化参数和测试误差。该简单实例展示了PSO-BP预测的应用,能够为实际场景提供一定的参考。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贝哲斯数据中心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值