编写独立应用程序实现数据去重及求平均值

(1)编写独立应用程序实现数据去重

对于两个输入文件A和B,编写Spark独立应用程序,对两个文件进行合并,并剔除其中重复的内容,得到一个新文件C。下面是输入文件和输出文件的一个样例,供参考。

输入文件A的样例如下:

20170101    x

20170102    y

20170103    x

20170104    y

20170105    z

20170106    z

输入文件B的样例如下:

20170101    y

20170102    y

20170103    x

20170104    z

20170105    y

根据输入的文件A和B合并得到的输出文件C的样例如下:

20170101    x

20170101    y

20170102    y

20170103    x

20170104    y

20170104    z

20170105    y

20170105    z

20170106    z

vim ans1.py
from pyspark import SparkConf, SparkContext
conf = SparkConf().setAppName("MergeDeduplicationSort")
sc = SparkContext(conf=conf)
inputA = sc.textFile("file:///opt/module/spark-3.0.3-bin-without-hadoop/mycode/fileA")
inputB = sc.textFile("file:///opt/module/spark-3.0.3-bin-without-hadoop/mycode/fileB")
merged = inputA.union(inputB)
deduplicated = merged.distinct()
sortedResult = deduplicated.sortBy(lambda x: x)
sortedResult.repartition(1).saveAsTextFile("file:///opt/module/spark-3.0.3-bin-without-hadoop/mycode/fileC")
sc.stop()
python3 ans1.py
cd fileC
cat part-00000  

(2)编写独立应用程序实现求平均值问题

每个输入文件表示班级学生某个学科的成绩,每行内容由两个字段组成,第一个是学生名字,第二个是学生的成绩;编写Spark独立应用程序求出所有学生的平均成绩,并输出到一个新文件中。下面是输入文件和输出文件的一个样例,供参考。

Algorithm成绩:

小明 92

小红 87

小新 82

小丽 90

Database成绩:

小明 95

小红 81

小新 89

小丽 85

Python成绩:

小明 82

小红 83

小新 94

小丽 91

平均成绩如下:

    (小红,83.67)

    (小新,88.33)

    (小明,89.67)

(小丽,88.67)

vim ans2.py
from pyspark import SparkConf, SparkContext
conf = SparkConf().setAppName("CalculateAverageScore")
sc = SparkContext(conf=conf)
lines1 = sc.textFile(“file:///opt/module/spark-3.0.3-bin-without-hadoop/mycode/Javaweb”)
lines2 = sc.textFile(“file:///opt/module/spark-3.0.3-bin-without-hadoop/mycode/C++”)
lines3 = sc.textFile(“file:///opt/module/spark-3.0.3-bin-without-hadoop/mycode/Spark”)
lines = lines1.union(lines2).union(lines3)
data = lines.map(lambda x:x.split(" ")).map(lambda x:(x[0],(int(x[1]),1)))
res = data.reduceByKey(lambda x,y:(x[0]+y[0],x[1]+y[1]))
result = res.map(lambda x:(x[0],round(x[1][0]/x[1][1],2)))
result.repartition(1).saveAsTextFile(“file:///opt/module/spark-3.0.3-bin-without-hadoop/mycode/fileD”)
sc.stop()
python3 ans2.py
cd fileD
cat part-00000  

 总结

  1.  通过编写独立应用程序实现一些功能了解到了在使用Spark进行数据处理时,可以通过创建SparkConf和SparkContext对象来配置和初始化Spark应用程序。对于需要对RDD进行转换的操作,可以使用各种转换函数,如union、distinct和sortBy等、最终结果可以通过将RDD保存到一个或多个文件中来进行持久化。在保存结果之前,可以对结果进行分区、排序或其他处理,以获得更好的性能和可读性。在完成Spark应用程序后,需要停止SparkContext对象,以释放资源和关闭应用程序。
  2.  编程中也遇到很多问题,如:将结果写入文件中时,应该加入repartition(1),作用是让结果合并到一个文件中,不加的话会结果写入到多个文件中。不加的话结果会分布式地保存在多个文件中,好处是可以更好地利用分布式文件系统的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小关不摆烂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值