(1)编写独立应用程序实现数据去重
对于两个输入文件A和B,编写Spark独立应用程序,对两个文件进行合并,并剔除其中重复的内容,得到一个新文件C。下面是输入文件和输出文件的一个样例,供参考。
输入文件A的样例如下:
20170101 x
20170102 y
20170103 x
20170104 y
20170105 z
20170106 z
输入文件B的样例如下:
20170101 y
20170102 y
20170103 x
20170104 z
20170105 y
根据输入的文件A和B合并得到的输出文件C的样例如下:
20170101 x
20170101 y
20170102 y
20170103 x
20170104 y
20170104 z
20170105 y
20170105 z
20170106 z
vim ans1.py
from pyspark import SparkConf, SparkContext
conf = SparkConf().setAppName("MergeDeduplicationSort")
sc = SparkContext(conf=conf)
inputA = sc.textFile("file:///opt/module/spark-3.0.3-bin-without-hadoop/mycode/fileA")
inputB = sc.textFile("file:///opt/module/spark-3.0.3-bin-without-hadoop/mycode/fileB")
merged = inputA.union(inputB)
deduplicated = merged.distinct()
sortedResult = deduplicated.sortBy(lambda x: x)
sortedResult.repartition(1).saveAsTextFile("file:///opt/module/spark-3.0.3-bin-without-hadoop/mycode/fileC")
sc.stop()
python3 ans1.py
cd fileC
cat part-00000
(2)编写独立应用程序实现求平均值问题
每个输入文件表示班级学生某个学科的成绩,每行内容由两个字段组成,第一个是学生名字,第二个是学生的成绩;编写Spark独立应用程序求出所有学生的平均成绩,并输出到一个新文件中。下面是输入文件和输出文件的一个样例,供参考。
Algorithm成绩:
小明 92
小红 87
小新 82
小丽 90
Database成绩:
小明 95
小红 81
小新 89
小丽 85
Python成绩:
小明 82
小红 83
小新 94
小丽 91
平均成绩如下:
(小红,83.67)
(小新,88.33)
(小明,89.67)
(小丽,88.67)
vim ans2.py
from pyspark import SparkConf, SparkContext
conf = SparkConf().setAppName("CalculateAverageScore")
sc = SparkContext(conf=conf)
lines1 = sc.textFile(“file:///opt/module/spark-3.0.3-bin-without-hadoop/mycode/Javaweb”)
lines2 = sc.textFile(“file:///opt/module/spark-3.0.3-bin-without-hadoop/mycode/C++”)
lines3 = sc.textFile(“file:///opt/module/spark-3.0.3-bin-without-hadoop/mycode/Spark”)
lines = lines1.union(lines2).union(lines3)
data = lines.map(lambda x:x.split(" ")).map(lambda x:(x[0],(int(x[1]),1)))
res = data.reduceByKey(lambda x,y:(x[0]+y[0],x[1]+y[1]))
result = res.map(lambda x:(x[0],round(x[1][0]/x[1][1],2)))
result.repartition(1).saveAsTextFile(“file:///opt/module/spark-3.0.3-bin-without-hadoop/mycode/fileD”)
sc.stop()
python3 ans2.py
cd fileD
cat part-00000
总结
- 通过编写独立应用程序实现一些功能了解到了在使用Spark进行数据处理时,可以通过创建SparkConf和SparkContext对象来配置和初始化Spark应用程序。对于需要对RDD进行转换的操作,可以使用各种转换函数,如union、distinct和sortBy等、最终结果可以通过将RDD保存到一个或多个文件中来进行持久化。在保存结果之前,可以对结果进行分区、排序或其他处理,以获得更好的性能和可读性。在完成Spark应用程序后,需要停止SparkContext对象,以释放资源和关闭应用程序。
- 编程中也遇到很多问题,如:将结果写入文件中时,应该加入repartition(1),作用是让结果合并到一个文件中,不加的话会结果写入到多个文件中。不加的话结果会分布式地保存在多个文件中,好处是可以更好地利用分布式文件系统的性能。