任务描述
本关任务:编写Spark独立应用程序实现整合排序。
相关知识
为了完成本关任务,你需要掌握:RDD的创建;RDD的转换操作;RDD的行动操作。
RDD的创建
使用textFile()方法从本地文件系统中加载数据创建RDD,示例如下:
val lines = sc.textFile("file:///home/hadoop/word.txt")
执行sc.textFile()方法以后,Spark从本地文件word.txt中加载数据到内存,在内存中生成一个RDD对象lines,这个RDD里面包含了若干个元素,每个元素的类型是String类型,也就是说,从word.txt文件中读取出来的每一行文本内容,都成为RDD中的一个元素。
使用map()函数转换得到相应的键值对RDD,示例如下:
val lines = sc.textFile("file:///home/hadoop/word.txt")
val pairRDD = lines.flatMap(line => line.split(" ")).map(word => (word,1))
上面示例中,map(word=>(word,1))函数的作用是取出RDD中的每个元素,也就是每个单词,赋值给word,然后把word转换成(word,1)的键值对形式。
RDD的转换操作
对于RDD而言,每一次转换操作都会产生新的RDD,供给下一个操作使用。RDD的转换过程是惰性求值的,也就是说,整个转换过程只是记录了转换的轨迹,并不会发生真正的计算,只有遇到行动操作时,才会触发真正的计算。常见的RDD转换操作如下所示:
**filter(func)**:筛选出满足函数func的元素,并返回一个新的RDD,示例如下:
val lines = sc.textFile("file:///home/hadoop/word.txt")
val linesWithSpark = lines.filter(line => line.contains("Spark"))
**map(func)**:将每个元素传递到函数func中,并将结果返回为一个新的RDD,示例如下:
val lines = sc.textFile("file:///home/hadoop/word.txt")
val words = lines.map(line => line.split(" "))
**sortByKey()**:应用于(K,V)键值对RDD时,返回一个新的根据key排序的RDD,示例如下:
val pairRDD = sc.parallelize(Array("Hadoop",3),("Spark",5),("Hive",2))
pairRDD.sortByKey().foreach(println)
输出:
(Hadoop,3)
(Hive,2)
(Spark,5)
**partitionBy(partitioner: Partitioner)**:根据partitioner函数生成新的ShuffleRDD,将原RDD重新分区,示例如下:
val lines = sc.textFile("file:///home/hadoop/word.txt", 3)
val words = lines.flatMap(line => line.split(" ")).map(word => (word,1)).partitionBy(new HashPartitioner(1))
keys:将键值对RDD中所有元素的key返回,形成一个新的RDD,示例如下:
val pairRDD = sc.parallelize(Array("Hadoop",3),("Spark",5),("Hive",2))
pairRDD.keys.foreach(println)
输出:
Hadoop
Spark
Hive
RDD的行动操作
对于RDD而言,只有遇到行动操作时才会执行“从头到尾”的真正的计算,从文件中加载数据,完成一次又一次转换操作,最终,完成行动操作得到结果。常见的RDD行动操作如下所示:
**count()**:返回RDD中元素的个数
**collect()**:以数组的形式返回RDD中的所有元素
**first()**:返回RDD中的第一个元素
**take(n)**:以数组的形式返回RDD中的前n个元素
**reduce(func)**:通过函数func(输入两个参数并返回一个值)聚合RDD中的元素
**foreach(func)**:将RDD中的每个元素传递到函数func中运行 下面通过一个示例来介绍上述行动操作,如下所示:
val rdd = sc.parallelize(Array(1,2,3,4,5))
println(rdd.count)
println(rdd.first)
println(rdd.take(3).mkString(", "))
println(rdd.collect().mkString("-> "))
rdd.foreach(println)
输出: 5 1 1, 2, 3 1-> 2-> 3-> 4-> 5 1 2 3 4 5
编程要求
假设某个目录下有多个文本文件,每个文件中每一行内容均为一个整数。要求读取所有文件中的整数,进行排序后,输出到一个新的文件中,输出的内容为每行两个整数,第一个整数为第二个整数的排序位次,第二个整数为原待排序的整数。下面是输入文件和输出文件的一个样例,供参考。
输入文件1的样例如下:
33
37
12
40
输入文件2的样例如下:
4
16
39
5
输入文件3的样例如下:
1
45
25
输出文件的样例如下:
1 1
2 4
3 5
4 12
5 16
6 25
7 33
8 37
9 39
10 40
11 45
测试说明
本实训目前是基于Spark单机模式的运行方式,完成整个评测流程所需时间较长(全过程耗时约60秒),请耐心等待!
开始你的任务吧,祝你成功!
参考代码
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.HashPartitioner
object FileSort {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("FileSort").setMaster("local")
val sc = new SparkContext(conf)
//输入文件file1.txt、file2.txt和file3.txt已保存在本地文件系统/root/step2_files目录中
val dataFile = "file:///root/step2_files"
val data = sc.textFile(dataFile, 3)
/********** Begin **********/
//第一步:执行过滤操作,把空行丢弃。
val rdd1 = data.filter(_.trim().length > 0)
//第二步:执行map操作,取出RDD中每个元素,去除尾部空格并转换成整数,生成一个(key, value)键值对。
val rdd2 = rdd1.map(line => (line.trim.toInt, ""))
//第三步:对RDD进行重新分区,变成一个分区,
//在分布式环境下只有把所有分区合并成一个分区,才能让所有元素排序后总体有序。
val rdd3 = rdd2.partitionBy(new HashPartitioner(1))
//第四步:执行sortByKey操作,对RDD中所有元素都按照key的升序排序。
val rdd4 = rdd3.sortByKey()
//第五步:执行keys操作,将键值对RDD中所有元素的key返回,形成一个新的RDD。
val rdd5 = rdd4.keys
//第六步:执行map操作,取出RDD中每个元素,生成一个(key, value)键值对,
//其中key是整数的排序位次,value是原待排序的整数。
var index = 0
val rdd6 = rdd5.map(t => {
index = index + 1
(index, t)
})
//第七步:执行collect操作,以数组的形式返回RDD中所有元素。
val rdd7 = rdd6.collect()
//第八步:执行foreach操作,依次遍历数组中每个元素,分别取出(key, value)键值对中key和value,
//按如下格式输出:key value
println("") //注意:此行不要修改,否则会影响测试结果,在此行之后继续完成第八步的代码。
rdd7.foreach(t => println(t._1 + " " + t._2))
/********** End **********/
}
}