代码随想录算法训练营Day17|Leetcode110平衡二叉树、Leetcode257二叉树的所有路径、Leetcode404左叶子之和

Day17打卡! 时长:1.5h

今日感想:今天也是收获满满!前两天的内容得到复习的基础上,还学到了新的解题思路~

Leetcode110 平衡二叉树

题目链接:Leetcode110 平衡二叉树

第一想法:感觉跟昨天做的题有点像,也是处理高度的活,应该要用后序遍历。

讲解后想法:

递归三部曲(后序)

1.明确递归函数的参数和返回值

参数:当前传入节点。
返回值:以当前传入节点为根节点的树的高度。

如何标记左右子树是否差值大于1呢?

如果当前传入节点为根节点的二叉树已经不是二叉平衡树了,还返回高度的话就没有意义了,可以返回-1 来标记已经不符合平衡树的规则了。

2.明确终止条件

递归的过程中依然是遇到空节点了为终止,返回0,表示当前节点为根节点的树高度为0。

3.明确单层递归的逻辑

如何判断以当前传入节点为根节点的二叉树是否是平衡二叉树呢?当然是其左子树高度和其右子树高度的差值。

分别求出其左右子树的高度,然后如果差值小于等于1,则返回当前二叉树的高度,否则返回-1,表示已经不是二叉平衡树了。

遇到的困难:还可以理解~

代码:

class Solution {
    public boolean isBalanced(TreeNode root) {
        return getHeight(root) != -1;
    }

    private int getHeight(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int leftHeight = getHeight(root.left);
        if (leftHeight == -1) {
            return -1;
        }
        int rightHeight = getHeight(root.right);
        if (rightHeight == -1) {
            return -1;
        }
        // 左右子树高度差大于1,return -1表示已经不是平衡树了
        if (Math.abs(leftHeight - rightHeight) > 1) {
            return -1;
        }
        return Math.max(leftHeight, rightHeight) + 1;
    }
}

Leetcode257 二叉树的所有路径

题目链接:Leetcode257 二叉树的所有路径

第一想法:这是一个深度优先遍历,如何做到不重不漏是重点。

讲解后想法:前序遍历,且回溯。

1.递归函数函数参数以及返回值

要传入根节点,记录每一条路径的path,和存放结果集的result,这里递归不需要返回值。

2.确定递归终止条件

因为本题要找到叶子节点,就开始结束的处理逻辑了(把路径放进result里)。

那么什么时候算是找到了叶子节点? 是当 cur不为空,其左右孩子都为空的时候,就找到叶子节点。

3.确定单层递归逻辑

①因为是前序遍历,需要先处理中间节点,中间节点就是我们要记录路径上的节点,先放进path中。

②然后是递归。上面说过没有判断cur是否为空,那么在这里递归的时候,如果为空就不进行下一层递归了。所以递归前要加上判断语句,下面要递归的节点是否为空。

③此时还没完,递归完,要做回溯。因为path 不能一直加入节点,它还要删节点,然后才能加入新的节点。回溯和递归是一一对应的,有一个递归,就要有一个回溯。所以回溯要和递归永远在一起,世界上最遥远的距离是你在花括号里,而我在花括号外!

遇到的困难:努力理解递归法的思路和代码~

代码:

class Solution {
    public List<String> binaryTreePaths(TreeNode root) {
        List<String> res = new ArrayList<>();
        if (root == null) {
            return res;
        }
        List<Integer> paths = new ArrayList<>();
        traversal(root, paths, res);
        return res;
    }

    private void traversal(TreeNode root, List<Integer> paths, List<String> res) {
        paths.add(root.val);
        // 叶子结点
        if (root.left == null && root.right == null) {
            // 输出
            StringBuilder sb = new StringBuilder();
            for (int i = 0; i < paths.size() - 1; i++) {
                sb.append(paths.get(i)).append("->");
            }
            sb.append(paths.get(paths.size() - 1));
            res.add(sb.toString());
            return;
        }
        if (root.left != null) {
            traversal(root.left, paths, res);
            paths.remove(paths.size() - 1);// 回溯
        }
        if (root.right != null) {
            traversal(root.right, paths, res);
            paths.remove(paths.size() - 1);// 回溯
        }
    }
}

Leetcode404 左叶子之和

题目链接:Leetcode404 左叶子之和

第一想法:感觉也是一个后序遍历(左右中),只不过只传所有左叶子节点的值,最后求和。

讲解后想法:思路差不多,但是没有彻底搞清楚题意,他说的是左叶子:节点A的左孩子不为空,且左孩子的左右孩子都为空(说明是叶子节点),那么A节点的左孩子为左叶子节点。

递归法(后序)

1.确定递归函数的参数和返回值

判断一个树的左叶子节点之和,那么一定要传入树的根节点,递归函数的返回值为数值之和,所以为int,使用题目中给出的函数就可以了。

2.确定终止条件

如果遍历到空节点,那么左叶子值一定是0。

(注意,只有当前遍历的节点是父节点,才能判断其子节点是不是左叶子。 所以如果当前遍历的节点是叶子节点,那其左叶子也必定是0。)

3.确定单层递归的逻辑

当遇到左叶子节点的时候,记录数值,然后通过递归求取左子树左叶子之和,和 右子树左叶子之和,相加便是整个树的左叶子之和。

遇到的困难:这题是有一点绕的,因为本题我们要通过节点的父节点判断本节点的属性。

代码:

class Solution {
    public int sumOfLeftLeaves(TreeNode root) {
        if (root == null) return 0;
        int leftValue = sumOfLeftLeaves(root.left);    // 左
        int rightValue = sumOfLeftLeaves(root.right);  // 右
                                                       
        int midValue = 0;
        if (root.left != null && root.left.left == null && root.left.right == null) { 
            midValue = root.left.val;
        }
        int sum = midValue + leftValue + rightValue;  // 中
        return sum;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值