Day17打卡! 时长:1.5h
今日感想:今天也是收获满满!前两天的内容得到复习的基础上,还学到了新的解题思路~
Leetcode110 平衡二叉树
题目链接:Leetcode110 平衡二叉树
第一想法:感觉跟昨天做的题有点像,也是处理高度的活,应该要用后序遍历。
讲解后想法:
递归三部曲(后序)
1.明确递归函数的参数和返回值
参数:当前传入节点。
返回值:以当前传入节点为根节点的树的高度。如何标记左右子树是否差值大于1呢?
如果当前传入节点为根节点的二叉树已经不是二叉平衡树了,还返回高度的话就没有意义了,可以返回-1 来标记已经不符合平衡树的规则了。
2.明确终止条件
递归的过程中依然是遇到空节点了为终止,返回0,表示当前节点为根节点的树高度为0。
3.明确单层递归的逻辑
如何判断以当前传入节点为根节点的二叉树是否是平衡二叉树呢?当然是其左子树高度和其右子树高度的差值。
分别求出其左右子树的高度,然后如果差值小于等于1,则返回当前二叉树的高度,否则返回-1,表示已经不是二叉平衡树了。
遇到的困难:还可以理解~
代码:
class Solution {
public boolean isBalanced(TreeNode root) {
return getHeight(root) != -1;
}
private int getHeight(TreeNode root) {
if (root == null) {
return 0;
}
int leftHeight = getHeight(root.left);
if (leftHeight == -1) {
return -1;
}
int rightHeight = getHeight(root.right);
if (rightHeight == -1) {
return -1;
}
// 左右子树高度差大于1,return -1表示已经不是平衡树了
if (Math.abs(leftHeight - rightHeight) > 1) {
return -1;
}
return Math.max(leftHeight, rightHeight) + 1;
}
}
Leetcode257 二叉树的所有路径
题目链接:Leetcode257 二叉树的所有路径
第一想法:这是一个深度优先遍历,如何做到不重不漏是重点。
讲解后想法:前序遍历,且回溯。
1.递归函数函数参数以及返回值
要传入根节点,记录每一条路径的path,和存放结果集的result,这里递归不需要返回值。
2.确定递归终止条件
因为本题要找到叶子节点,就开始结束的处理逻辑了(把路径放进result里)。
那么什么时候算是找到了叶子节点? 是当 cur不为空,其左右孩子都为空的时候,就找到叶子节点。
3.确定单层递归逻辑
①因为是前序遍历,需要先处理中间节点,中间节点就是我们要记录路径上的节点,先放进path中。
②然后是递归。上面说过没有判断cur是否为空,那么在这里递归的时候,如果为空就不进行下一层递归了。所以递归前要加上判断语句,下面要递归的节点是否为空。
③此时还没完,递归完,要做回溯。因为path 不能一直加入节点,它还要删节点,然后才能加入新的节点。回溯和递归是一一对应的,有一个递归,就要有一个回溯。所以回溯要和递归永远在一起,世界上最遥远的距离是你在花括号里,而我在花括号外!
遇到的困难:努力理解递归法的思路和代码~
代码:
class Solution {
public List<String> binaryTreePaths(TreeNode root) {
List<String> res = new ArrayList<>();
if (root == null) {
return res;
}
List<Integer> paths = new ArrayList<>();
traversal(root, paths, res);
return res;
}
private void traversal(TreeNode root, List<Integer> paths, List<String> res) {
paths.add(root.val);
// 叶子结点
if (root.left == null && root.right == null) {
// 输出
StringBuilder sb = new StringBuilder();
for (int i = 0; i < paths.size() - 1; i++) {
sb.append(paths.get(i)).append("->");
}
sb.append(paths.get(paths.size() - 1));
res.add(sb.toString());
return;
}
if (root.left != null) {
traversal(root.left, paths, res);
paths.remove(paths.size() - 1);// 回溯
}
if (root.right != null) {
traversal(root.right, paths, res);
paths.remove(paths.size() - 1);// 回溯
}
}
}
Leetcode404 左叶子之和
题目链接:Leetcode404 左叶子之和
第一想法:感觉也是一个后序遍历(左右中),只不过只传所有左叶子节点的值,最后求和。
讲解后想法:思路差不多,但是没有彻底搞清楚题意,他说的是左叶子:节点A的左孩子不为空,且左孩子的左右孩子都为空(说明是叶子节点),那么A节点的左孩子为左叶子节点。
递归法(后序)
1.确定递归函数的参数和返回值
判断一个树的左叶子节点之和,那么一定要传入树的根节点,递归函数的返回值为数值之和,所以为int,使用题目中给出的函数就可以了。
2.确定终止条件
如果遍历到空节点,那么左叶子值一定是0。
(注意,只有当前遍历的节点是父节点,才能判断其子节点是不是左叶子。 所以如果当前遍历的节点是叶子节点,那其左叶子也必定是0。)
3.确定单层递归的逻辑
当遇到左叶子节点的时候,记录数值,然后通过递归求取左子树左叶子之和,和 右子树左叶子之和,相加便是整个树的左叶子之和。
遇到的困难:这题是有一点绕的,因为本题我们要通过节点的父节点判断本节点的属性。
代码:
class Solution {
public int sumOfLeftLeaves(TreeNode root) {
if (root == null) return 0;
int leftValue = sumOfLeftLeaves(root.left); // 左
int rightValue = sumOfLeftLeaves(root.right); // 右
int midValue = 0;
if (root.left != null && root.left.left == null && root.left.right == null) {
midValue = root.left.val;
}
int sum = midValue + leftValue + rightValue; // 中
return sum;
}
}