
§01 题目
如图,一牧人在A处牧马,牧人的家在B处,A,B处距河岸的距离分别是AC=500m,BD=700m,且C,D两地间的距离为500m,牧人准备从A处出发将马牵到河边去饮水,再赶回家。
(1) 为了使所走的路程最短,牧人应将马赶到河边什么地点? 请你在图中画出来并说明理由。
(2) 请求出牧人要走的最短路程。

轴对称的最短路径问题
§02 解题思路
-
(1)
将此题转化为轴对称问题,作出A点关于河岸的对称点A,根据两点之间线段最短得出BA的长即为牧人要走的最短路程; -
(2)
根据(1)中的图形,利用勾股定理解答即可。
§03 参考答案
1、第一小问
如图1
,点
P
P
P即为所求。
理由如下:
作 A A A点关于河岸 C D CD CD的对称点 A ′ A' A′,连接 B A ′ BA' BA′交河岸于点 P P P,连接 P A PA PA,则 P A = P A ′ PA=PA' PA=PA′。
因为 P B + P A = P B + P A ′ = B A ′ PB+PA=PB+PA'=BA' PB+PA=PB+PA′=BA′,此时路程最短。
所以牧人应将马赶到河边的点P处。

▲ 图1
2、第二小问
如图2
,过点
A
A
A作
A
B
⊥
B
D
AB⊥BD
AB⊥BD,交
B
D
BD
BD的延长线于点
B
B
B。
易得 D B ′ = C A ′ = C A = 500 m DB'=CA'=CA=500m DB′=CA′=CA=500m, B ′ A ′ = C D = 500 m B'A'=CD=500m B′A′=CD=500m。
在 R t △ B B ′ A Rt△BB'A Rt△BB′A中,
B B ′ = B D + D B ′ = 200 m BB'=BD+DB'= 200 m BB′=BD+DB′=200m, A ′ B 2 = B ′ B 2 + A ′ B ′ 2 A'{B^2} = B'{B^2} + A'B{'^2} A′B2=B′B2+A′B′2
所以 A ′ B = 1300 m A'B=1300m A′B=1300m,
所以牧人要走的最短路程是 1300 m 1300m 1300m。

▲ 图2
※ 附录

▲ 题目

▲ 答案与解析