轴对称的最短路径问题



§01


如图,一牧人在A处牧马,牧人的家在B处,A,B处距河岸的距离分别是AC=500m,BD=700m,且C,D两地间的距离为500m,牧人准备从A处出发将马牵到河边去饮水,再赶回家。
(1) 为了使所走的路程最短,牧人应将马赶到河边什么地点? 请你在图中画出来并说明理由。
(2) 请求出牧人要走的最短路程。


轴对称的最短路径问题

§02 题思路


  • (1) 将此题转化为轴对称问题,作出A点关于河岸的对称点A,根据两点之间线段最短得出BA的长即为牧人要走的最短路程;
  • (2) 根据(1)中的图形,利用勾股定理解答即可。

§03 考答案


1、第一小问

图1,点 P P P即为所求。

理由如下:

A A A点关于河岸 C D CD CD的对称点 A ′ A' A,连接 B A ′ BA' BA交河岸于点 P P P,连接 P A PA PA,则 P A = P A ′ PA=PA' PA=PA

因为 P B + P A = P B + P A ′ = B A ′ PB+PA=PB+PA'=BA' PB+PA=PB+PA=BA,此时路程最短。

所以牧人应将马赶到河边的点P处。

▲ 图1

2、第二小问

图2,过点 A A A A B ⊥ B D AB⊥BD ABBD,交 B D BD BD的延长线于点 B B B

易得 D B ′ = C A ′ = C A = 500 m DB'=CA'=CA=500m DB=CA=CA=500m B ′ A ′ = C D = 500 m B'A'=CD=500m BA=CD=500m

R t △ B B ′ A Rt△BB'A RtBBA中,

B B ′ = B D + D B ′ = 200 m BB'=BD+DB'= 200 m BB=BD+DB=200m A ′ B 2 = B ′ B 2 + A ′ B ′ 2 A'{B^2} = B'{B^2} + A'B{'^2} AB2=BB2+AB2

所以 A ′ B = 1300 m A'B=1300m AB=1300m

所以牧人要走的最短路程是 1300 m 1300m 1300m

▲ 图2


▲ 题目

▲ 答案与解析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

捣蛋小君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值