Continual Learning of Large Language Models: A Comprehensive Survey

一篇关于持续学习及大语言模型持续学习的综述文章,正文以垂直连续性(或垂直连续学习)和水平连续性(或水平连续学习)为主要框架,重点介绍LLM垂直持续学习的方法,即,顶层持续预训练CPT、中间层领域自适应持续预训练DAP、底层持续微调CFT。接着描述了数据集、评价指标及展望方向。附录包含了传统方法的问题定义及分析、评价指标。

文中包含了传统持续学习及LLM持续学习的不同关注点。

LLM持续预训练

LLM领域自适应预训练

LLM持续微调

Shi H, Xu Z, Wang H, et al. Continual learning of large language models: A comprehensive survey[J]. arXiv preprint arXiv:2404.16789, 2024.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值