每天起床头件事,先背一遍展开式

image-20240429102013155

泰勒公式

f ( x ) f(x) f(x)在点 x = 0 x=0 x=0 n n n阶可导,则存在 x = 0 x=0 x=0的一个邻域,对于该邻域内的任一点 x x x,有
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x)=f(0)+f^\prime(0)x+\frac{f^{\prime\prime}(0)}{2!}x^2+\cdots+\frac{f^{(n)}(0)}{n!}x^n+o(x^n) f(x)=f(0)+f(0)x+2!f′′(0)x2++n!f(n)(0)xn+o(xn)

泰勒展开式

任何一个无穷阶可导的函数都可以写成
y = f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n , 或者 y = f ( x ) = ∑ n = 0 ∞ f ( n ) ( 0 ) n ! x n . y=f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n,\\或者 \\y=f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n. y=f(x)=n=0n!f(n)(x0)(xx0)n,或者y=f(x)=n=0n!f(n)(0)xn.

重要函数的泰勒公式

sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n + 1 x 2 n + 1 ( 2 n + 1 ) ! = x − x 3 3 ! + o ( x 3 ) cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! = 1 − x 2 2 ! + x 4 4 ! + o ( x 4 ) arcsin ⁡ x = x + x 3 3 ! + o ( x 3 ) tan ⁡ x = x + x 3 3 + o ( x 3 ) arctan ⁡ x = x − x 3 3 + o ( x 3 ) \sin x=\sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{(2n+1)!} =x-\frac{x^3}{3!}+o(x^3) \\ \cos x=\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}=1-\frac{x^2}{2!}+\frac{x^4}{4!}+o(x^4) \\ \arcsin x=x+\frac{x^3}{3!}+o(x^3) \\ \tan x=x+\frac{x^3}{3}+o(x^3) \\ \arctan x=x-\frac{x^3}{3}+o(x^3) sinx=n=0(1)n+1(2n+1)!x2n+1=x3!x3+o(x3)cosx=n=0(1)n(2n)!x2n=12!x2+4!x4+o(x4)arcsinx=x+3!x3+o(x3)tanx=x+3x3+o(x3)arctanx=x3x3+o(x3)

ln ⁡ ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 x n n = x − x 2 2 + x 3 3 + o ( x 3 ) e x = ∑ n = 0 ∞ x n n ! = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) \ln (1+x)=\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}=x-\frac{x^2}{2}+\frac{x^3}{3}+o(x^3) \\ e^x=\sum_{n=0}^\infty \frac{x^n}{n!}=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3) \\ ln(1+x)=n=1(1)n1nxn=x2x2+3x3+o(x3)ex=n=0n!xn=1+x+2!x2+3!x3+o(x3)

( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + o ( x 2 ) 1 1 − x = 1 + x + x 2 + x 3 + o ( x 3 ) 1 1 + x = 1 − x + x 2 − x 3 + o ( x 3 ) (1+x)^\alpha=1+\alpha x+\frac{\alpha (\alpha-1)}{2!}x^2+o(x^2) \\ \frac{1}{1-x}=1+x+x^2+x^3+o(x^3) \\ \frac{1}{1+x}=1-x+x^2-x^3+o(x^3) (1+x)α=1+αx+2!α(α1)x2+o(x2)1x1=1+x+x2+x3+o(x3)1+x1=1x+x2x3+o(x3)

处理得到等价无穷小代换

x − sin ⁡ x = 1 6 x 3 + o ( x 3 ) x-\sin x=\frac{1}{6}x^3+o(x^3) xsinx=61x3+o(x3),则 x − sin ⁡ x ∼ 1 6 x 3 ( x → 0 ) x-\sin x\thicksim\frac{1}{6}x^3(x \rightarrow 0) xsinx61x3(x0)

同理有
arcsin ⁡ x − x ∼ 1 6 x 3 ( x → 0 ) , tan ⁡ x − x ∼ 1 3 x 3 ( x → 0 ) , x − arctan ⁡ x ∼ x 3 3 ( x → 0 ) \arcsin x-x \thicksim \frac{1}{6}x^3(x \rightarrow 0),\tan x-x \thicksim \frac{1}{3}x^3(x \rightarrow 0),x-\arctan x \thicksim \frac{x^3}{3}(x \rightarrow 0) arcsinxx61x3(x0),tanxx31x3(x0),xarctanx3x3(x0)
:对于 A B \frac{A}{B} BA型应用泰勒公式展开时,适用上下同阶原则;对于 A − B A-B AB型应用泰勒公式展开时,需要展开到它们系数不相等的 x x x的最低次幂。

常用等价无穷小

x → 0 x \rightarrow 0 x0时,常用的等价无穷小有
sin ⁡ x ∼ x , tan ⁡ x ∼ x , arcsin ⁡ x ∼ x , ln ⁡ ( 1 + x ) ∼ x , e x − 1 ∼ x \sin x \thicksim x,\tan x \thicksim x,\arcsin x \thicksim x,\ln{(1+x)} \thicksim x,e^x -1\thicksim x sinxx,tanxx,arcsinxx,ln(1+x)x,ex1x

a x − 1 ∼ x ln ⁡ a , 1 − cos ⁡ x ∼ 1 2 x 2 , ( 1 + x ) a − 1 ∼ a x a^x-1 \thicksim x\ln a,1-\cos x \thicksim \frac{1}{2}x^2,(1+x)^a-1 \thicksim ax ax1xlna,1cosx21x2,(1+x)a1ax

进一步,可以推出
sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ ln ⁡ ( 1 + x ) ∼ e x − 1 ∼ a x − 1 ln ⁡ a ∼ arctan ⁡ x \sin x \thicksim \tan x \thicksim \arcsin x \thicksim \ln{(1+x)} \thicksim e^x-1 \thicksim \frac{a^x-1}{\ln a} \thicksim \arctan x sinxtanxarcsinxln(1+x)ex1lnaax1arctanx

:使用时,一般都进行广义化,将 x x x替换为趋于0的函数。

补充的等价无穷小

( x → 0 ) 1 − ( cos ⁡ x ) a ∼ 1 2 a x 2 , x − sin ⁡ x ∼ 1 6 x 3 , x − tan ⁡ x ∼ 1 3 x 3 ln ⁡ ( x + x 2 + 1 ) ∼ x (x \rightarrow 0) \\ 1-(\cos x)^a \sim \frac{1}{2}ax^2,x-\sin x \sim \frac{1}{6}x^3,x-\tan x \sim \frac{1}{3}x^3 \\ \ln (x+ \sqrt{x^2+1}) \sim x (x0)1(cosx)a21ax2,xsinx61x3,xtanx31x3ln(x+x2+1 )x

重要极限

lim ⁡ x → 0 sin ⁡ x x = 1 , lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim _{x \rightarrow 0} \frac{\sin x}{x}=1,\lim _{x \rightarrow \infty} (1+\frac{1}{x})^x=e x0limxsinx=1,xlim(1+x1)x=e

tips:求极限时,形如 ln ⁡ ( 1 + e x ) − x \ln (1+e^x)-x ln(1+ex)x可以转化为 ln ⁡ ( 1 + e x ) − ln ⁡ e x \ln (1+e^x)-\ln e^x ln(1+ex)lnex,可以方便求解。

一些补充极限

lim ⁡ x → ∞ ( 1 + a x ) b x + d = e a b \lim _{x \rightarrow \infty}(1+\frac{a}{x})^{bx+d}=e^{ab} xlim(1+xa)bx+d=eab

lim ⁡ x → ∞ ( x + a x − a ) x = e 2 a , ( 2 a = a + a ) \lim _{x \rightarrow \infty}(\frac{x+a}{x-a})^x=e^{2a},(2a=a+a) xlim(xax+a)x=e2a,(2a=a+a)

lim ⁡ a → ∞ a 1 n + a 2 n + . . . + a m n n = max ⁡ { a i } , a i > 0 , i = 1 , 2 , . . . , m ( 奥特曼公式 , D o g e ) \lim _{a \rightarrow \infty} \sqrt[n]{a_1^n+a_2^n+...+a_m^n}=\max\{ a_i \},a_i>0,i=1,2,...,m(奥特曼公式,Doge) alimna1n+a2n+...+amn =max{ai},ai>0,i=1,2,...,m(奥特曼公式,Doge)

常用不等式

基本不等式

2 1 a + 1 b ≤ a b ≤ a + b 2 ≤ a 2 + b 2 2 ∣ a b ∣ ≤ a 2 + b 2 2 \frac{2}{\frac{1}{a}+\frac{1}{b}} \leq \sqrt{ab} \leq \frac{a+b}{2} \leq \sqrt{\frac{a^2+b^2}{2}} \\ |ab| \leq \frac{a^2+b^2}{2} a1+b12ab 2a+b2a2+b2 ab2a2+b2

绝对值不等式

∣ a ∣ − ∣ b ∣ ≤ ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ ; ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ |a|-|b| \leq |a \pm b| \leq |a| +|b|;\\ ||a|-|b|| \leq |a-b| aba±ba+b;∣∣ab∣∣ab

三角函数不等式

sin ⁡ x < tan ⁡ x , ( 0 < x < π 2 ) sin ⁡ x < x , ( 0 < x ) x < tan ⁡ x < 4 π x , ( 0 < x < π 4 ) sin ⁡ x > 2 π x , ( 0 < x < π 2 ) arctan ⁡ x ≤ x ≤ arcsin ⁡ x , ( 0 ≤ x ≤ 1 ) \sin x < \tan x,(0<x<\frac{\pi}{2}) \\ \sin x <x,(0<x) \\ x <\tan x <\frac{4}{\pi}x,(0<x<\frac{\pi}{4}) \\\sin x>\frac{2}{\pi}x,(0<x<\frac{\pi}{2}) \\ \arctan x \leq x \leq \arcsin x,(0 \leq x \leq 1) \\ sinx<tanx,(0<x<2π)sinx<x,(0<x)x<tanx<π4x,(0<x<4π)sinx>π2x,(0<x<2π)arctanxxarcsinx,(0x1)

其他常用不等式

e x ≥ x + 1 , ( ∀ x ) e^x \geq x+1,(\forall x) exx+1,(x)

x − 1 ≥ ln ⁡ x , ( x > 0 ) x-1 \geq \ln x,(x>0) x1lnx,(x>0)

1 x + 1 < ln ⁡ ( 1 + 1 x ) < 1 x 或 x 1 + x < ln ⁡ ( 1 + x ) < x , ( x > 0 ) \frac{1}{x+1} < \ln(1+\frac{1}{x}) < \frac{1}{x} 或 \frac{x}{1+x} < \ln(1+x) <x,(x>0) x+11<ln(1+x1)<x11+xx<ln(1+x)<x,(x>0)

压缩映射原理

原理一

对数列 { x n } \{x_n\} {xn},若存在常数 k ( 0 < k < 1 ) k(0<k<1) k(0<k<1),使得 ∣ x − a ∣ ≤ k ∣ x − a ∣ , n = 1 , 2 , . . . |x-a|\leq k|x-a|,n=1,2,... xakxa,n=1,2,...,则 { x } \{x\} {x}收敛于 a a a

证明

0 ≤ ∣ x n + 1 − a ∣ ≤ k ∣ x n − a ∣ ≤ k 2 ∣ x n − 1 − a ∣ ≤ . . . ≤ k n ∣ x 1 − a ∣ 0 \leq |x_{n+1}-a| \leq k|x_n-a| \leq k^2|x_{n-1}-a| \leq ... \leq k_n|x_1-a| 0xn+1akxnak2xn1a...knx1a,由于 lim ⁡ n → ∞ k = 0 \lim_{n \rightarrow \infty} k=0 limnk=0,根据夹逼准则,有 lim ⁡ n → ∞ ∣ x n + 1 − a ∣ = 0 \lim_{n \rightarrow \infty}|x_{n+1}-a|=0 limnxn+1a=0,即 { x } \{x\} {x}收敛于 a a a

原理二

对数列 { x n } \{x_n\} {xn},若 x + 1 = f ( x ) , n = 1 , 2 , . . . x+1=f(x),n=1,2,... x+1=f(x),n=1,2,... f ( x ) f(x) f(x)可导, a a a f ( x ) = x f(x)=x f(x)=x的唯一解,且 ∀ x ∈ R \forall x \in R xR,有 ∣ f ′ ′ ( x ) ≤ k < 1 |f^{''}(x)\leq k<1 f′′(x)k<1,则 { x } \{x\} {x}收敛于 a a a
证明:

∣ x n + 1 − a ∣ = ∣ f ( x ) − f ( a ) ∣ = 拉格朗日中值定理 f ′ ( ξ ) ∣ x n − a ∣ ≤ k ∣ x − a ∣ |x_{n+1}-a|=|f(x)-f(a)|\xlongequal{拉格朗日中值定理}f^{\prime}(\xi)|x_n-a| \leq k|x-a| xn+1a=f(x)f(a)拉格朗日中值定理 f(ξ)xnakxa,其中 ξ \xi ξ介于 a a a x x x之间,由原理一,有 { x n } \{x_n\} {xn}收敛于 a a a

导数的计算

基本求导公式

( x α ) ′ = α x α − 1 ( α 为常数 ) , ( a x ) ′ = a x ln ⁡ a ( a > 0 , a ≠ 1 ) , ( e x ) ′ = e x , ( log ⁡ a x ) ′ = 1 x ln ⁡ a ( a > 0 , a ≠ 1 ) , ( ln ⁡ ∣ x ∣ ) ′ = 1 x (x^{\alpha})^\prime=\alpha x^{\alpha -1}(\alpha 为常数),(a^x)^\prime=a^x\ln a(a>0,a \neq1),(e^x)^\prime=e^x,(\log _a x)^\prime=\frac{1}{x\ln a}(a>0,a \neq1),(\ln |x|)^\prime=\frac{1}{x} (xα)=αxα1(α为常数),(ax)=axlna(a>0,a=1),(ex)=ex,(logax)=xlna1(a>0,a=1),(lnx)=x1

( sin ⁡ x ) ′ = cos ⁡ x , ( cos ⁡ x ) ′ = − sin ⁡ x , ( tan ⁡ x ) ′ = sec ⁡ 2 x , ( cot ⁡ x ) ′ = − csc ⁡ 2 x , ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x , ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x ( arcsin ⁡ x ) ′ = 1 1 − x 2 , ( arccos ⁡ x ) ′ = − 1 1 − x 2 , ( arctan ⁡ x ) ′ = 1 1 + x 2 , ( arccot  x ) ′ = − 1 1 + x 2 (\sin x)^\prime = \cos x,(\cos x)^\prime =-\sin x, (\tan x )^\prime =\sec^{2}x,(\cot x)^\prime =-\csc^{2}x,(\sec x)^\prime=\sec x\tan x,(\csc x)^\prime=-\csc x\cot x \\ (\arcsin x)^\prime=\frac{1}{\sqrt{1-x^2}},(\arccos x)^\prime=-\frac{1}{\sqrt{1-x^2}},(\arctan x)^\prime=\frac{1}{1+x^2},(\text{arccot} \ x)^\prime=-\frac{1}{1+x^2} (sinx)=cosx,(cosx)=sinx,(tanx)=sec2x,(cotx)=csc2x,(secx)=secxtanx,(cscx)=cscxcotx(arcsinx)=1x2 1,(arccosx)=1x2 1,(arctanx)=1+x21,(arccot x)=1+x21

[ ln ⁡ ( x + x 2 + 1 ) ] ′ = 1 x 2 + 1 , [ ln ⁡ ( x + x 2 − 1 ) ] ′ = 1 x 2 − 1 [\ln (x+\sqrt{x^2+1})]^\prime=\frac{1}{\sqrt{x^2+1}},[\ln (x+\sqrt{x^2-1})]^\prime=\frac{1}{\sqrt{x^2-1}} [ln(x+x2+1 )]=x2+1 1,[ln(x+x21 )]=x21 1

常用高阶导数

( e a x + b ) ( n ) = a n e a x + b ; [ sin ⁡ ( a x + b ) ] ( n ) = a n sin ⁡ ( a x + b + n π 2 ) ; [ cos ⁡ ( a x + b ) ] ( n ) = a n cos ⁡ ( a x + b + n π 2 ) ; [ ln ⁡ ( a x + b ) ] ( n ) = ( − 1 ) n − 1 a n ( n − 1 ) ! ( a x + b ) n ; ( 1 a x + b ) ( n ) = ( − 1 ) n a n n ! a x + b n + 1 . (e^{ax+b})^{(n)}=a^ne^{ax+b}; \\ [\sin(ax+b)]^{(n)}=a^n \sin(ax+b+\frac{n\pi}{{2}}); \\ [\cos(ax+b)]^{(n)}=a^n \cos(ax+b+\frac{n\pi}{{2}}); \\ [\ln(ax+b)]^{(n)}=(-1)^{n-1}a^n\frac{(n-1)!}{(ax+b)^n}; \\ (\frac{1}{ax+b})^{(n)}=(-1)^na^n\frac{n!}{ax+b}^{n+1}. (eax+b)(n)=aneax+b;[sin(ax+b)](n)=ansin(ax+b+2);[cos(ax+b)](n)=ancos(ax+b+2);[ln(ax+b)](n)=(1)n1an(ax+b)n(n1)!;(ax+b1)(n)=(1)nanax+bn!n+1.

莱布尼茨公式

( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)}=\sum^n_{k=0} C_n^k u^{(n-k)} v^{(k)} (uv)(n)=k=0nCnku(nk)v(k)

反函数的导数

x y ′ = 1 y x ′ , x y y ′ ′ = − y x x ′ ′ ( y x ′ ) 3 x_y^\prime=\frac{1}{y_x^\prime},x_{yy}^{\prime\prime}=-\frac{y_{xx}^{\prime\prime}}{(y_x^\prime)^3} xy=yx1,xyy′′=(yx)3yxx′′

曲率

曲率 k = ∣ y ′ ′ ∣ [ 1 + ( y ′ ) 2 ] 3 2 曲率半径 r = 1 k 曲率k=\frac{|y^{\prime\prime}|}{[1+(y^\prime)^2]^{\frac{3}{2}}} \\ 曲率半径r=\frac{1}{k} 曲率k=[1+(y)2]23y′′曲率半径r=k1

tips:曲线一点的曲率圆,与曲线在该点处,具有相同的一阶、二阶导数值。

中值定理

罗尔定理的辅助函数构造

  1. 见到 f ( x ) f ′ ( x ) f(x)f^\prime(x) f(x)f(x),令 F ( x ) = f 2 ( x ) F(x)=f^2(x) F(x)=f2(x)
  2. 见到 [ f ( x ) ] 2 + f ( x ) f ′ ′ ( x ) [f(x)]^2+f(x)f^{\prime\prime}(x) [f(x)]2+f(x)f′′(x),令 F ( x ) = f ( x ) f ′ ( x ) F(x)=f(x)f^\prime(x) F(x)=f(x)f(x)
  3. 见到 f ′ ( x ) + φ ′ ( x ) f^\prime(x)+\varphi^\prime(x) f(x)+φ(x),令 F ( x ) = f ( x ) e φ ( x ) F(x)=f(x)e^{\varphi(x)} F(x)=f(x)eφ(x)
  4. 见到 f ′ ( x ) x − f ( x ) f^\prime(x)x-f(x) f(x)xf(x),令 F ( x ) = f ( x ) x F(x)=\frac{f(x)}{x} F(x)=xf(x)

实际上,这些辅助函数的构造不仅仅限于罗尔定理的使用。

如果需要构造辅助函数,可以根据题设函数,对其积分,构造辅助函数。

拉格朗日中值定理

见到 f ( a ) − f ( b ) f(a)-f(b) f(a)f(b) f f f f ′ f^\prime f的关系,一般想到用拉格朗日中值定理。

Γ 函数 \Gamma 函数 Γ函数相关知识

计算积分时,若能使用上“ Γ 函数 \Gamma 函数 Γ函数”的知识,会即快速又准确。

  1. 定义:

Γ ( α ) = ∫ 0 + ∞ x α − 1 e − x d x = x = t 2 2 ∫ 0 + ∞ t 2 α − 1 e − t 2 d t , ( x , t > 0 ) \Gamma(\alpha)=\int ^{+ \infty} _0 x^{\alpha -1}e^{-x}dx \overset{x=t^2}{=}2\int ^{+ \infty} _0 t^{2\alpha-1}e^{-t^2}dt,(x,t>0) Γ(α)=0+xα1exdx=x=t220+t2α1et2dt,(x,t>0)

以上两个定义式主要看 e e e的次方是一次还是二次进行选择。

  1. 递推式:

Γ ( α + 1 ) = α Γ ( α ) \Gamma(\alpha+1)=\alpha\Gamma(\alpha) Γ(α+1)=αΓ(α)

其中, Γ ( 1 ) = 1 , Γ ( 1 2 ) = π \Gamma(1)=1,\Gamma(\frac{1}{2})=\sqrt{\pi} Γ(1)=1,Γ(21)=π ,故 Γ ( n + 1 ) = n ! , Γ ( 2 ) = 1 , Γ ( 5 2 ) = 3 2 ∗ 1 2 ∗ Γ ( 1 2 ) = 3 4 π \Gamma(n+1)=n!,\Gamma(2)=1,\Gamma(\frac{5}{2})=\frac{3}{2}*\frac{1}{2}*\Gamma(\frac{1}{2})=\frac{3}{4}\sqrt{\pi} Γ(n+1)=n!,Γ(2)=1,Γ(25)=2321Γ(21)=43π

积分的计算

基本积分公式

∫ x k d x = 1 k + 1 x k + 1 + C , k ≠ − 1 ; { ∫ 1 x 2 d x = − 1 x + C , ∫ 1 x d x = 2 x + C . \int x^{k} \mathrm{d}x=\frac{1}{k+1} x^{k+1}+C , k\neq-1 ;\quad\begin{cases}\int\frac{1}{x^{2}}\mathrm{d}x=-\frac{1}{x}+C ,\\\int\frac{1}{\sqrt{x}}\mathrm{d}x=2\sqrt{x}+C.\end{cases} xkdx=k+11xk+1+C,k=1;{x21dx=x1+C,x 1dx=2x +C.

∫ 1 x d x = ln ⁡ ∣ x ∣ + C . \int{\frac{1}{x}}\mathrm{d}x=\ln\left|x\right|+C . x1dx=lnx+C.

∫ e x d x = e x + C ; ∫ a x d x = a x ln ⁡ a + C , a > 0 且 a ≠ 1. \int\mathrm{e}^{x}\mathrm{d}x=\mathrm{e}^{x}+C ; \int a^{x}\mathrm{d}x=\frac{a^{x}}{\ln a}+C , a>0 \text{且}a\neq1 . exdx=ex+C;axdx=lnaax+C,a>0a=1.

∫ sin ⁡ x d x = − cos ⁡ x + C ; ∫ cos ⁡ x d x = sin ⁡ x + C ; ∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C   ;   ∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C   ; ∫ d x cos ⁡ x = ∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C ; ∫ d x sin ⁡ x = ∫ csc ⁡ x d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C ; ∫ sec ⁡ 2 x d x = tan ⁡ x + C ; ∫ csc ⁡ 2 x d x = − cot ⁡ x + C ; ∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C   ;   ∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C . \int\sin x\mathrm{d}x=-\cos x+C ; \int\cos x\mathrm{d}x=\sin x+C ;\\ \int\tan x\mathrm{d}x=-\ln\left|\cos x\right|+C\:;\:\int\cot x\mathrm{d}x=\ln\left|\sin x\right|+C\:;\\ \int\frac{\mathrm{d}x}{\cos x}=\int\sec x\mathrm{d}x= \ln \left | \sec x+ \tan x\right | + C ;\\ \int\frac{\mathrm{d}x}{\sin x}=\int\csc x\mathrm{d}x= \ln \left | \csc x- \cot x\right | + C;\\ \int \sec ^{2}x\mathrm{d}x= \tan x+ C ; \int \csc ^2x\mathrm{d}x= - \cot x+ C;\\ \int\sec x\tan x\mathrm{d}x=\sec x+C\:;\:\int\csc x\cot x\mathrm{d}x=-\csc x+C. sinxdx=cosx+C;cosxdx=sinx+C;tanxdx=lncosx+C;cotxdx=lnsinx+C;cosxdx=secxdx=lnsecx+tanx+C;sinxdx=cscxdx=lncscxcotx+C;sec2xdx=tanx+C;csc2xdx=cotx+C;secxtanxdx=secx+C;cscxcotxdx=cscx+C.

{ ∫ 1 1 + x 2 d x = arctan ⁡ x + C , ∫ 1 a 2 + x 2 d x = 1 a arctan ⁡ x a + C ( a > 0 ) . \begin{cases}\int\frac{1}{1+x^{2}}\mathrm{d}x=\arctan x+C ,\\\int\frac{1}{a^{2}+x^{2}}\mathrm{d}x=\frac{1}{a}\arctan\frac{x}{a}+C(a>0).\end{cases} {1+x21dx=arctanx+C,a2+x21dx=a1arctanax+C(a>0).

{ ∫ 1 1 − x 2 d x = arcsin ⁡ x + C , ∫ 1 a 2 − x 2 d x = arcsin ⁡ x a + C ( a > 0 ) . \begin{cases}\int\frac{1}{\sqrt{1-x^{2}}}\mathrm{d}x=\arcsin x+C ,\\\int\frac{1}{\sqrt{a^{2}-x^{2}}}\mathrm{d}x=\arcsin\frac{x}{a}+C(a>0).\end{cases} {1x2 1dx=arcsinx+C,a2x2 1dx=arcsinax+C(a>0).

{ ∫ 1 x 2 + a 2 d x = ln ⁡ ( x + x 2 + a 2 ) + C ( 常见  a = 1 ) , ∫ 1 x 2 − a 2 d x = ln ⁡ ∣ x + x 2 − a 2 ∣ + C ( ∣ x ∣ > ∣ a ∣ ) . \begin{cases}\int\frac{1}{\sqrt{x^{2}+a^{2}}}\mathrm{d}x=\ln(x+\sqrt{x^{2}+a^{2}})+C(\text{常见 }a=1),\\\int\frac{1}{\sqrt{x^{2}-a^{2}}}\mathrm{d}x=\ln\left|x+\sqrt{x^{2}-a^{2}}\right|+C(\left|x\right|>\left|a\right|).\end{cases} {x2+a2 1dx=ln(x+x2+a2 )+C(常见 a=1),x2a2 1dx=ln x+x2a2 +C(x>a).

∫ 1 x 2 − a 2 d x = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C ( ∫ 1 a 2 − x 2 d x = 1 2 a ln ⁡ ∣ x + a x − a ∣ + C ) . \int\frac{1}{x^{2}-a^{2}}\mathrm{d}x=\frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right|+C\left(\int\frac{1}{a^{2}-x^{2}}\mathrm{d}x=\frac{1}{2a}\ln\left|\frac{x+a}{x-a}\right|+C\right) . x2a21dx=2a1ln x+axa +C(a2x21dx=2a1ln xax+a +C).

∫ a 2 − x 2 d x = a 2 2 arcsin ⁡ x a + x 2 a 2 − x 2 + C ( a > ∣ x ∣ ⩾ 0 ) . \int\sqrt{a^{2}-x^{2}} \mathrm{d}x=\frac{a^{2}}{2}\arcsin\frac{x}{a}+\frac{x}{2}\sqrt{a^{2}-x^{2}}+C(a>|x|\geqslant0) . a2x2 dx=2a2arcsinax+2xa2x2 +C(a>x0).

∫ sin ⁡ 2 x d x = x 2 − sin ⁡ 2 x 4 + C ( sin ⁡ 2 x = 1 − cos ⁡ 2 x 2 ) ; ∫ cos ⁡ 2 x d x = x 2 + sin ⁡ 2 x 4 + C ( cos ⁡ 2 x = 1 + cos ⁡ 2 x 2 ) ; ∫ tan ⁡ 2 x d x = tan ⁡ x − x + C ( tan ⁡ 2 x = sec ⁡ 2 x − 1 ) ; ∫ cot ⁡ 2 x d x = − cot ⁡ x − x + C ( cot ⁡ 2 x = csc ⁡ 2 x − 1 ) \begin{gathered} \int\sin^{2}x\mathrm{d}x= \frac{x}{2}-\frac{\sin2x}{4}+C\Bigg(\sin^{2}x=\frac{1-\cos2x}{2}\Bigg) ; \\ \int\cos^2x\mathrm{d}x= \frac{x}{2}+\frac{\sin2x}{4}+C\Bigg(\cos^{2}x=\frac{1+\cos2x}{2}\Bigg) ; \\ \int\tan^2x\mathrm{d}x= \tan x-x+C\Bigg(\tan^2x=\sec^2x-1\Bigg) ; \\ \int\cot^2x\mathrm{d}x =-\cot x-x+C\Bigg(\cot^{2}x=\csc^{2}x-1\Bigg) \end{gathered} sin2xdx=2x4sin2x+C(sin2x=21cos2x);cos2xdx=2x+4sin2x+C(cos2x=21+cos2x);tan2xdx=tanxx+C(tan2x=sec2x1);cot2xdx=cotxx+C(cot2x=csc2x1)

点火公式

∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { n − 1 n ⋅ n − 3 n − 2 ⋅ ⋯ ⋅ 2 3 ⋅ 1 , n 为大于 1 的奇数 , n − 1 n ⋅ n − 3 n − 2 ⋅ ⋯ ⋅ 1 2 ⋅ π 2 , n 为正偶数 . \int_{0}^{\frac{\pi}{2} }\sin ^n x dx= \int_{0}^{\frac{\pi}{2} }\cos ^n x dx= \left\{\begin{matrix} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{2}{3} \cdot 1 ,& n为大于1的奇数,\\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & n为正偶数. \end{matrix}\right. 02πsinnxdx=02πcosnxdx={nn1n2n3321,nn1n2n3212π,n为大于1的奇数,n为正偶数.

∫ 0 π sin ⁡ n x d x = { 2 ⋅ n − 1 n ⋅ n − 3 n − 2 ⋅ ⋯ ⋅ 2 3 ⋅ 1 , n 为大于 1 的奇数 , 2 ⋅ n − 1 n ⋅ n − 3 n − 2 ⋅ ⋯ ⋅ 1 2 ⋅ π 2 , n 为正偶数 . \int_{0}^{\pi}\sin ^n x dx= \left\{\begin{matrix} 2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{2}{3} \cdot 1, & n为大于1的奇数,\\ 2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & n为正偶数. \end{matrix}\right. 0πsinnxdx={2nn1n2n3321,2nn1n2n3212π,n为大于1的奇数,n为正偶数.

∫ 0 π cos ⁡ n x d x = { 0 , n 为正奇数 , 2 ⋅ n − 1 n ⋅ n − 3 n − 2 ⋅ ⋯ ⋅ 1 2 ⋅ π 2 , n 为正偶数 . \int_{0}^{\pi}\cos ^n x dx= \left\{\begin{matrix} 0, & n为正奇数,\\ 2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & n为正偶数. \end{matrix}\right. 0πcosnxdx={0,2nn1n2n3212π,n为正奇数,n为正偶数.

∫ 0 2 π cos ⁡ n x d x = ∫ 0 2 π sin ⁡ n x d x = { 0 , n 为正奇数 , 4 ⋅ n − 1 n ⋅ n − 3 n − 2 ⋅ ⋯ ⋅ 1 2 ⋅ π 2 , n 为正偶数 . \int_{0}^{2\pi}\cos ^n x dx=\int_{0}^{2\pi}\sin ^n x dx =\left\{\begin{matrix} 0, & n为正奇数,\\ 4 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & n为正偶数. \end{matrix}\right. 02πcosnxdx=02πsinnxdx={0,4nn1n2n3212π,n为正奇数,n为正偶数.

带有三角函数的积分的凑微分方法

形如 ∫ p ( sin ⁡ x , cos ⁡ x ) d x \int p(\sin x,\cos x)dx p(sinx,cosx)dx的积分

若:

  • P ( − sin ⁡ x , cos ⁡ x ) = − P ( sin ⁡ x , cos ⁡ x ) P(-\sin x,\cos x)=-P(\sin x,\cos x) P(sinx,cosx)=P(sinx,cosx),凑 d cos ⁡ x d\cos x dcosx
  • P ( sin ⁡ x , − cos ⁡ x ) = − P ( sin ⁡ x , cos ⁡ x ) P(\sin x,-\cos x)=-P(\sin x,\cos x) P(sinx,cosx)=P(sinx,cosx),凑 d sin ⁡ x d\sin x dsinx
  • P ( − sin ⁡ x , − cos ⁡ x ) = P ( sin ⁡ x , cos ⁡ x ) P(-\sin x,-\cos x)=P(\sin x,\cos x) P(sinx,cosx)=P(sinx,cosx),凑 d tan ⁡ x d\tan x dtanx

三角函数与 e x e^x ex的积分

∫ e a x sin ⁡ b x d x = ∣ ( e a x ) ′ ( sin ⁡ b x ) ′ e a x sin ⁡ b x ∣ a 2 + b 2 + C \int e^{ax}\sin bx dx = \frac{\begin{vmatrix} (e^{ax})^\prime & (\sin bx)^\prime \\ e^{ax} & \sin bx \end{vmatrix}}{a^2+b^2} +C eaxsinbxdx=a2+b2 (eax)eax(sinbx)sinbx +C

∫ e a x cos ⁡ b x d x = ∣ ( e a x ) ′ ( cos ⁡ b x ) ′ e a x cos ⁡ b x ∣ a 2 + b 2 + C \int e^{ax}\cos bx dx = \frac{\begin{vmatrix} (e^{ax})^\prime & (\cos bx)^\prime \\ e^{ax} & \cos bx \end{vmatrix}}{a^2+b^2} +C eaxcosbxdx=a2+b2 (eax)eax(cosbx)cosbx +C

积分学的几何应用

平面图形面积

  1. 曲线 y = y 1 ( x ) y=y_{1}(x) y=y1(x) y = y 2 ( x ) y=y_{2}(x) y=y2(x) x = a , x = b ( a < b ) x=a,x=b(a<b) x=a,x=b(a<b)所围成的平面图形的面积:

S = ∫ a b ∣ y 1 ( x ) − y 2 ( x ) ∣ d x . S=\int_{a}^{b}\left|y_{1}(x)-y_{2}(x)\right| \mathrm{d} x . S=aby1(x)y2(x)dx.

  1. 曲线 r = r 1 ( θ ) r=r_1(\theta) r=r1(θ) r = r 2 ( θ ) r=r_2(\theta) r=r2(θ)与两射线 θ = α \theta=\alpha θ=α θ = β ( 0 < β − α ⩽ 2 π ) \theta=\beta(0<\beta-\alpha\leqslant2\pi) θ=β(0<βα2π)所围成的曲边扇形的面积:

S = 1 2 ∫ α β ∣ r 1 2 ( θ ) − r 2 2 ( θ ) ∣ d θ . S=\frac{1}{2}\int_{\alpha}^{\beta}\left|r_{1}^{2}(\theta)-r_{2}^{2}(\theta)\right|\mathrm{d}\theta . S=21αβ r12(θ)r22(θ) dθ.

旋转体体积

1.曲线 y = y ( x ) y=y(x) y=y(x) x = a , x = b ( a < b ) x=a,x=b(a<b) x=a,x=b(a<b) x x x轴围成的曲边梯形绕 x x x轴旋转一周所得到的旋转体的体积:
V x = ∫ a b π y 2 ( x ) d x . V_x=\int_a^b\pi y^2(x)\mathrm{d}x . Vx=abπy2(x)dx.
2.曲线 y = y ( x ) y=y(x) y=y(x) x = a , x = b ( 0 ⩽ a < b ) x=a,x=b(0\leqslant a<b) x=a,x=b(0a<b) x x x轴围成的曲边梯形绕 y y y轴旋转一周所得到的旋转体的体积:
V y = 2 π ∫ a b x ∣ y ( x ) ∣ d x . V_y=2\pi\int_a^bx\big|y(x)\big|\mathrm{d}x . Vy=2πabx y(x) dx.

  1. 平面曲线绕定直线旋转

设平面曲线 L : y = f ( x ) , a ⩽ x ⩽ b L:y=f(x),a\leqslant x\leqslant b L:y=f(x),axb,且 f ( x ) f(x) f(x)可导.

定直线 L 0 : A x + B y + C = 0 L_0:Ax+By+C=0 L0:Ax+By+C=0 ,且过 L 0 L_0 L0的任一条垂线与 L L L 至多有一个交点,则 L L L L 0 L_0 L0旋转一周所得旋转体的体积为:
V = π ( A 2 + B 2 ) 3 2 ∫ a b [ A x + B f ( x ) + C ] 2 ∣ A f ′ ( x ) − B ∣ d x   . V=\frac{\pi}{(A^2+B^2)^{\frac{3}{2}}}\int_{a}^{b}\bigl[Ax+Bf(x)+C\bigr]^{2}\bigl|Af'(x)-B\bigr|\mathrm{d}x\:. V=(A2+B2)23πab[Ax+Bf(x)+C]2 Af(x)B dx.

函数平均值

x ∈ [ a , b ] , x\in[a,b], x[a,b], 函数 y ( x ) y(x) y(x) [ a , b ] [a,b] [a,b]上的平均值为:
y ‾ = 1 b − a ∫ a b y ( x ) d x . \overline{y}=\frac{1}{b-a}\int_{a}^{b}y(x)\mathrm{d}x . y=ba1aby(x)dx.

其他几何应用

  1. “平面上的曲边梯形”的形心坐标公式

x ‾ = ∬ D x d σ ∬ D d σ = ∫ a b d x ∫ 0 f ( x ) x d y ∫ a b d x ∫ 0 f ( x ) d y = ∫ a b x f ( x ) d x ∫ a b f ( x ) d x ; \overline{x}=\frac{\iint_{D}x\mathrm{d}\sigma}{\iint_{D}\mathrm{d}\sigma}=\frac{\int_{a}^{b}\mathrm{d}x\int_{0}^{f(x)}x\mathrm{d}y}{\int_{a}^{b}\mathrm{d}x\int_{0}^{f(x)}\mathrm{d}y}=\frac{\int_{a}^{b}xf(x)\mathrm{d}x}{\int_{a}^{b}f(x)\mathrm{d}x} ; x=DdσDxdσ=abdx0f(x)dyabdx0f(x)xdy=abf(x)dxabxf(x)dx;

y ‾ = ∬ D y d σ ∬ D d σ = ∫ a b d x ∫ 0 f ( x ) y d y ∫ a b d x ∫ 0 f ( x ) d y = 1 2 ∫ a b f 2 ( x ) d x ∫ a b f ( x ) d x . \overline{y}=\frac{\iint\limits_Dy\mathrm{d}\sigma}{\iint\limits_D\mathrm{d}\sigma}=\frac{\int_a^b\mathrm{d}x\int_0^{f(x)}y\mathrm{d}y}{\int_a^b\mathrm{d}x\int_0^{f(x)}\mathrm{d}y}=\frac{\frac{1}{2}\int_a^bf^2(x)\mathrm{d}x}{\int_a^bf(x)\mathrm{d}x} . y=DdσDydσ=abdx0f(x)dyabdx0f(x)ydy=abf(x)dx21abf2(x)dx.

  1. 平面曲线的弧长.

    • 若平面光滑曲线由直角坐标方程 y = y ( x ) ( a ⩽ x ⩽ b ) y=y(x)(a\leqslant x\leqslant b) y=y(x)(axb)给出,则 s = ∫ a b 1 + [ y ′ ( x ) ] 2 s=\int_a^b\sqrt{1+[y^{\prime}(x)]^2} s=ab1+[y(x)]2 d x . x. x.
    • 若平面光滑曲线由参数方程 { x = x ( t ) , y = y ( t ) ( α ⩽ t ⩽ β ) \begin{cases}x=x(t),\\y=y(t)\end{cases}(\alpha\leqslant t\leqslant\beta) {x=x(t),y=y(t)(αtβ)给出,则 s = ∫ α β [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 d t . s=\int_{\alpha}^{\beta}\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}}\mathrm{d}t . s=αβ[x(t)]2+[y(t)]2 dt.
    • 若平面光滑曲线由极坐标方程 r = r ( θ ) ( α ⩽ θ ⩽ β ) r=r(\theta)(\alpha\leqslant\theta\leqslant\beta) r=r(θ)(αθβ)给出,则 s = ∫ α β [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2 d θ . s=\int_{\alpha}^{\beta}\sqrt{\left[r(\theta)\right]^{2}+\left[r^{\prime}(\theta)\right]^{2}}\mathrm{d}\theta . s=αβ[r(θ)]2+[r(θ)]2 dθ.
  2. 旋转曲面的面积(侧面积).

    • 曲线 L : y = f ( x ) , a ⩽ x ⩽ b L:y=f(x),a\leqslant x\leqslant b L:y=f(x),axb,绕 x x x轴旋转一周所得旋转曲面的面积
      S = 2 π ∫ a b ∣ y ∣ 1 + ( y x ′ ) 2 d x   . S=2\pi\int_a^b|y|\sqrt{1+(y_x^{\prime})^2}\mathrm{d}x\:. S=2πaby1+(yx)2 dx.
    • 曲线L: { x = x ( t ) , y = y ( t ) , α ⩽ t ⩽ β , \begin{cases} x= x( t) , \\ y= y( t) , & \end{cases} \alpha \leqslant t\leqslant \beta , {x=x(t),y=y(t),αtβ, x ′ ( t ) ≠ 0 x^\prime( t) \neq0 x(t)=0,绕 x x x轴旋转一周所得旋转曲面的面积
      S = 2 π ∫ α β ∣ y ( t ) ∣ ( x t ′ ) 2 + ( y t ′ ) 2 d t   . S=2\pi\int_{\alpha}^{\beta}\bigl|y(t)\bigr|\sqrt{(x_{t}^{\prime})^{2}+(y_{t}^{\prime})^{2}}\mathrm{d}t\:. S=2παβ y(t) (xt)2+(yt)2 dt.
    • 曲线 L : r = r ( θ ) , α ⩽ θ ⩽ β L:r=r(\theta),\alpha\leqslant\theta\leqslant\beta L:r=r(θ),αθβ,绕 x x x轴旋转一周所得旋转曲面的面积
      S = 2 π ∫ α β ∣ r ( θ ) sin ⁡ θ ∣ r 2 ( θ ) + [ r ′ ( θ ) ] 2 d θ   . S=2\pi\int_\alpha^\beta|r(\theta)\sin\theta|\sqrt{r^2(\theta)+[r^{\prime}(\theta)]^2}\mathrm{d}\theta\:. S=2παβr(θ)sinθr2(θ)+[r(θ)]2 dθ.
  3. 平行截面面积为已知的立体体积.

在区间 [ a , b ] [a,b] [a,b]上,垂直于 x x x轴的平面截立体 Ω \Omega Ω所得到的截面面积为 x x x的连续函数 A ( x ) A(x) A(x),则 Ω \Omega Ω的体积为:
V = ∫ a b A ( x ) d x   . V=\int_a^bA(x)\mathrm{d}x\:. V=abA(x)dx.

最远(近)点的垂线定理

  1. 如果 Γ \Gamma Γ是光滑闭曲线,点 Q Q Q Γ \Gamma Γ外的一个点,点 P 1 , P 2 P_1,P_2 P1,P2分别是 Γ \Gamma Γ上与点 Q Q Q最远点、最近点,则直线 P 1 Q , P 2 Q P_1Q,P_2Q P1Q,P2Q分别在点 P 1 P_1 P1处,点 P 2 P_2 P2处与 Γ \Gamma Γ垂直,即 P 1 Q , P 2 Q P_1Q,P_2Q P1Q,P2Q分别与点 P 1 , P 2 P_1,P_2 P1,P2的切线垂直。

即一个光滑闭曲线,一个曲线外的点 Q Q Q Q Q Q到最远点与最近点的连线与其切线垂直。

  1. 若光滑闭曲线 Γ 1 , Γ 2 \Gamma_1,\Gamma_2 Γ1,Γ2不相交,点 P 1 , P 2 P_1,P_2 P1,P2分别是它们之间的最远(近)点,则直线 P 1 P 2 P_1P_2 P1P2 Γ 1 , Γ 2 \Gamma_1,\Gamma_2 Γ1,Γ2的公垂线,即 P 1 P 2 P_1P_2 P1P2同时垂直于 Γ 1 , Γ 2 \Gamma_1,\Gamma_2 Γ1,Γ2在这两个点处的切线。

即两个光滑闭曲线,最远/最近点的连线与其各自切垂直。

微分方程

微分方程解的结构

  1. 非齐次通解 = = =齐次通解 + + +非齐次特解
  2. 非齐次解 − - 非齐次解 = = =齐次解
  3. 非齐次解 ± \pm ±齐次解 = = =非齐次解
  4. 齐次解 ± \pm ±齐次解 = = =齐次解
  5. k 1 k_1 k1非齐次解 + + + k 2 k_2 k2非齐次解 = = =非齐次解(其中 k 1 + k 2 = 1 k_1+k_2=1 k1+k2=1

某些题设隐含条件和解题结论

题设隐含条件

  1. f ( x + y ) = f ( x ) + f ( y ) f(x+y)=f(x)+f(y) f(x+y)=f(x)+f(y)是奇函数
  2. f ( x ) = f ( x − π ) + sin ⁡ x f(x)=f(x- \pi)+\sin x f(x)=f(xπ)+sinx 2 π 2\pi 2π为周期的周期函数
  3. 证必要性即证条件能推出结论,证充分性即证明结论能推出条件
  4. 条件能推出结论,称条件是结论的充分条件;结论能推出条件,称条件是结论的必要条件

解题结论

  1. 若 lim ⁡ f ( x ) g ( x ) = A , 且 lim ⁡ g ( x ) = 0 , 则 lim ⁡ f ( x ) = 0 若 \lim \frac{f(x)}{g(x)}=A,且\lim g(x)=0,则\lim f(x)=0 limg(x)f(x)=A,limg(x)=0,limf(x)=0
  2. 若 lim ⁡ f ( x ) g ( x ) = A ≠ 0 , 且 lim ⁡ f ( x ) = 0 , 则 lim ⁡ g ( x ) = 0 若 \lim \frac{f(x)}{g(x)}=A \neq 0,且\lim f(x)=0,则\lim g(x)=0 limg(x)f(x)=A=0,limf(x)=0,limg(x)=0
  3. 当 a > 1 时 , 形如 1 a x + 1 − 1 2 , a x − 1 a x + 1 均为奇函数 当a >1时,形如\frac{1}{a^x+1}-\frac{1}{2},\frac{a^x-1}{a^x+1}均为奇函数 a>1,形如ax+1121,ax+1ax1均为奇函数
  4. 若 φ ( x ) 在 x = x 0 处连续,则 f ( x ) = ∣ x − x 0 ∣ φ ( x ) 在点 x 0 处可导的充分必要条件是 φ ( x 0 ) = 0 若\varphi(x)在x=x_0处连续,则f(x)=|x-x_0|\varphi(x)在点x_0处可导的充分必要条件是\varphi(x_0)=0 φ(x)x=x0处连续,则f(x)=xx0φ(x)在点x0处可导的充分必要条件是φ(x0)=0
  5. 函数 f ( x ) = ( x − x 0 ) k ∣ x − x 0 ∣ 在 x = x 0 处最多 k 阶可导 函数f(x)=(x-x_0)^k|x-x_0|在x=x_0处最多k阶可导 函数f(x)=(xx0)kxx0x=x0处最多k阶可导
  6. 曲线的可导点不能同时为极值点和拐点,不可导点可以同时为极值点和拐点 曲线的可导点不能同时为极值点和拐点,不可导点可以同时为极值点和拐点 曲线的可导点不能同时为极值点和拐点,不可导点可以同时为极值点和拐点
  7. 设 f ( x ) = ( x − a ) n g ( x ) ( n > 1 ) , 且 g ( a ) ≠ 0 , 则当 n 为偶数时, x = a 时 f ( x ) 的极值点 ; 当 n 为奇数时,点 ( a , 0 ) 是曲线的拐点 设f(x)=(x-a)^ng(x)(n>1),且g(a)\neq 0,则当n为偶数时,x=a时f(x)的极值点;当n为奇数时,点(a,0)是曲线的拐点 f(x)=(xa)ng(x)(n>1),g(a)=0,则当n为偶数时,x=af(x)的极值点;n为奇数时,点(a,0)是曲线的拐点
  8. $设f(x)=(x-a_1){n_1}(x-a_2){n_2}…(x-a_k)^{n_k},其中n_i是正整数,a_i是实数且两两不相等,i=1,2,…,k. $ 记 k 1 为 n i = 1 的个数 , k 2 为 n i > 1 且为偶数的个数 , k 3 为 n i > 1 且为奇数的个数 , 则 f ( x ) 的极值点个数为 k 1 + 2 k 2 + k 3 − 1 , 拐点个数为 k 1 + 2 k 2 + 3 k 3 − 2 记k_1为n_i=1的个数,k_2为n_i>1且为偶数的个数,k_3为n_i>1且为奇数的个数,则f(x)的极值点个数为k_1+2k_2+k_3-1,拐点个数为k_1+2k_2+3k_3-2 k1ni=1的个数,k2ni>1且为偶数的个数,k3ni>1且为奇数的个数,f(x)的极值点个数为k1+2k2+k31,拐点个数为k1+2k2+3k32
  • 23
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值