文章目录
泰勒公式
设
f
(
x
)
f(x)
f(x)在点
x
=
0
x=0
x=0处
n
n
n阶可导,则存在
x
=
0
x=0
x=0的一个邻域,对于该邻域内的任一点
x
x
x,有
f
(
x
)
=
f
(
0
)
+
f
′
(
0
)
x
+
f
′
′
(
0
)
2
!
x
2
+
⋯
+
f
(
n
)
(
0
)
n
!
x
n
+
o
(
x
n
)
f(x)=f(0)+f^\prime(0)x+\frac{f^{\prime\prime}(0)}{2!}x^2+\cdots+\frac{f^{(n)}(0)}{n!}x^n+o(x^n)
f(x)=f(0)+f′(0)x+2!f′′(0)x2+⋯+n!f(n)(0)xn+o(xn)
泰勒展开式
任何一个无穷阶可导的函数都可以写成
y
=
f
(
x
)
=
∑
n
=
0
∞
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
,
或者
y
=
f
(
x
)
=
∑
n
=
0
∞
f
(
n
)
(
0
)
n
!
x
n
.
y=f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n,\\或者 \\y=f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n.
y=f(x)=n=0∑∞n!f(n)(x0)(x−x0)n,或者y=f(x)=n=0∑∞n!f(n)(0)xn.
重要函数的泰勒公式
sin x = ∑ n = 0 ∞ ( − 1 ) n + 1 x 2 n + 1 ( 2 n + 1 ) ! = x − x 3 3 ! + o ( x 3 ) arcsin x = x + x 3 3 ! + o ( x 3 ) tan x = x + x 3 3 + o ( x 3 ) arctan x = x − x 3 3 + o ( x 3 ) \sin x=\sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{(2n+1)!} =x-\frac{x^3}{3!}+o(x^3) \ \ \ \ \ \ \arcsin x=x+\frac{x^3}{3!}+o(x^3) \\ \tan x=x+\frac{x^3}{3}+o(x^3) \ \ \ \ \ \ \arctan x=x-\frac{x^3}{3}+o(x^3) sinx=n=0∑∞(−1)n+1(2n+1)!x2n+1=x−3!x3+o(x3) arcsinx=x+3!x3+o(x3)tanx=x+3x3+o(x3) arctanx=x−3x3+o(x3)
cos x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! = 1 − x 2 2 ! + x 4 4 ! + o ( x 4 ) \cos x=\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}=1-\frac{x^2}{2!}+\frac{x^4}{4!}+o(x^4) cosx=n=0∑∞(−1)n(2n)!x2n=1−2!x2+4!x4+o(x4)
ln ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 x n n = x − x 2 2 + x 3 3 + o ( x 3 ) e x = ∑ n = 0 ∞ x n n ! = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) \ln (1+x)=\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}=x-\frac{x^2}{2}+\frac{x^3}{3}+o(x^3) \\ e^x=\sum_{n=0}^\infty \frac{x^n}{n!}=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3) \\ ln(1+x)=n=1∑∞(−1)n−1nxn=x−2x2+3x3+o(x3)ex=n=0∑∞n!xn=1+x+2!x2+3!x3+o(x3)
( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + o ( x 2 ) 1 1 − x = 1 + x + x 2 + x 3 + o ( x 3 ) 1 1 + x = 1 − x + x 2 − x 3 + o ( x 3 ) (1+x)^\alpha=1+\alpha x+\frac{\alpha (\alpha-1)}{2!}x^2+o(x^2) \\ \frac{1}{1-x}=1+x+x^2+x^3+o(x^3) \\ \frac{1}{1+x}=1-x+x^2-x^3+o(x^3) (1+x)α=1+αx+2!α(α−1)x2+o(x2)1−x1=1+x+x2+x3+o(x3)1+x1=1−x+x2−x3+o(x3)
ln ( x + x 2 + 1 ) = x − 1 6 x 3 + o ( x 3 ) \ln (x+ \sqrt{x^2+1}) = x-\frac{1}{6}x^3+o(x^3) ln(x+x2+1)=x−61x3+o(x3)
处理得到等价无穷小代换
如 x − sin x = 1 6 x 3 + o ( x 3 ) x-\sin x=\frac{1}{6}x^3+o(x^3) x−sinx=61x3+o(x3),则 x − sin x ∼ 1 6 x 3 ( x → 0 ) x-\sin x\thicksim\frac{1}{6}x^3(x \rightarrow 0) x−sinx∼61x3(x→0)
同理有
arcsin
x
−
x
∼
1
6
x
3
(
x
→
0
)
,
tan
x
−
x
∼
1
3
x
3
(
x
→
0
)
,
x
−
arctan
x
∼
x
3
3
(
x
→
0
)
\arcsin x-x \thicksim \frac{1}{6}x^3(x \rightarrow 0),\tan x-x \thicksim \frac{1}{3}x^3(x \rightarrow 0),x-\arctan x \thicksim \frac{x^3}{3}(x \rightarrow 0)
arcsinx−x∼61x3(x→0),tanx−x∼31x3(x→0),x−arctanx∼3x3(x→0)
注1:对于
A
B
\frac{A}{B}
BA型应用泰勒公式展开时,适用上下同阶原则。
注2:对于 A − B A-B A−B型应用泰勒公式展开时,需要展开到它们系数不相等的 x x x的最低次幂。
常用等价无穷小
当
x
→
0
x \rightarrow 0
x→0时,常用的等价无穷小有
sin
x
∼
x
,
tan
x
∼
x
,
arcsin
x
∼
x
,
ln
(
1
+
x
)
∼
x
,
e
x
−
1
∼
x
\sin x \thicksim x,\tan x \thicksim x,\arcsin x \thicksim x,\ln{(1+x)} \thicksim x,e^x -1\thicksim x
sinx∼x,tanx∼x,arcsinx∼x,ln(1+x)∼x,ex−1∼x
a x − 1 ∼ x ln a , 1 − cos x ∼ 1 2 x 2 , ( 1 + x ) a − 1 ∼ a x a^x-1 \thicksim x\ln a,1-\cos x \thicksim \frac{1}{2}x^2,(1+x)^a-1 \thicksim ax ax−1∼xlna,1−cosx∼21x2,(1+x)a−1∼ax
进一步,可以推出
sin
x
∼
tan
x
∼
arcsin
x
∼
ln
(
1
+
x
)
∼
e
x
−
1
∼
a
x
−
1
ln
a
∼
arctan
x
\sin x \thicksim \tan x \thicksim \arcsin x \thicksim \ln{(1+x)} \thicksim e^x-1 \thicksim \frac{a^x-1}{\ln a} \thicksim \arctan x
sinx∼tanx∼arcsinx∼ln(1+x)∼ex−1∼lnaax−1∼arctanx
注:使用时,一般都进行广义化,将 x x x替换为趋于 0 0 0的函数。
补充的等价无穷小
( x → 0 ) 1 − ( cos x ) a ∼ 1 2 a x 2 , x − sin x ∼ 1 6 x 3 , x − tan x ∼ 1 3 x 3 ln ( x + x 2 + 1 ) ∼ x (x \rightarrow 0) \\ 1-(\cos x)^a \sim \frac{1}{2}ax^2,x-\sin x \sim \frac{1}{6}x^3,x-\tan x \sim \frac{1}{3}x^3 \\ \ln (x+ \sqrt{x^2+1}) \sim x (x→0)1−(cosx)a∼21ax2,x−sinx∼61x3,x−tanx∼31x3ln(x+x2+1)∼x
重要极限
lim x → 0 sin x x = 1 , lim x → ∞ ( 1 + 1 x ) x = e \lim _{x \rightarrow 0} \frac{\sin x}{x}=1,\lim _{x \rightarrow \infty} (1+\frac{1}{x})^x=e x→0limxsinx=1,x→∞lim(1+x1)x=e
tips:求极限时,形如 ln ( 1 + e x ) − x \ln (1+e^x)-x ln(1+ex)−x可以转化为 ln ( 1 + e x ) − ln e x \ln (1+e^x)-\ln e^x ln(1+ex)−lnex,可以方便求解。
一些补充极限
lim x → ∞ ( 1 + a x ) b x + d = e a b \lim _{x \rightarrow \infty}(1+\frac{a}{x})^{bx+d}=e^{ab} x→∞lim(1+xa)bx+d=eab
lim x → ∞ ( x + a x − a ) x = e 2 a , ( 2 a = a + a ) \lim _{x \rightarrow \infty}(\frac{x+a}{x-a})^x=e^{2a},(2a=a+a) x→∞lim(x−ax+a)x=e2a,(2a=a+a)
lim a → ∞ a 1 n + a 2 n + . . . + a m n n = max { a i } , a i > 0 , i = 1 , 2 , . . . , m ( 奥特曼公式 ) \lim _{a \rightarrow \infty} \sqrt[n]{a_1^n+a_2^n+...+a_m^n}=\max\{ a_i \},a_i>0,i=1,2,...,m(奥特曼公式) a→∞limna1n+a2n+...+amn=max{ai},ai>0,i=1,2,...,m(奥特曼公式)
常用等式和不等式
基本不等式
2 1 a + 1 b ≤ a b ≤ a + b 2 ≤ a 2 + b 2 2 ∣ a b ∣ ≤ a 2 + b 2 2 \frac{2}{\frac{1}{a}+\frac{1}{b}} \leq \sqrt{ab} \leq \frac{a+b}{2} \leq \sqrt{\frac{a^2+b^2}{2}} \\ |ab| \leq \frac{a^2+b^2}{2} a1+b12≤ab≤2a+b≤2a2+b2∣ab∣≤2a2+b2
绝对值不等式
∣ a ∣ − ∣ b ∣ ≤ ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ |a|-|b| \leq |a \pm b| \leq |a| +|b| \\ ||a|-|b|| \leq |a-b| ∣a∣−∣b∣≤∣a±b∣≤∣a∣+∣b∣∣∣a∣−∣b∣∣≤∣a−b∣
三角函数不等式
sin x < tan x , ( 0 < x < π 2 ) sin x < x , ( 0 < x ) x < tan x < 4 π x , ( 0 < x < π 4 ) 2 π x < sin x , ( 0 < x < π 2 ) arctan x ≤ x ≤ arcsin x , ( 0 ≤ x ≤ 1 ) \sin x < \tan x,(0<x<\frac{\pi}{2}) \\ \sin x <x,(0<x) \\ x <\tan x <\frac{4}{\pi}x,(0<x<\frac{\pi}{4}) \\\frac{2}{\pi}x <\sin x,(0<x<\frac{\pi}{2}) \\ \arctan x \leq x \leq \arcsin x,(0 \leq x \leq 1) \\ sinx<tanx,(0<x<2π)sinx<x,(0<x)x<tanx<π4x,(0<x<4π)π2x<sinx,(0<x<2π)arctanx≤x≤arcsinx,(0≤x≤1)
其他常用不等式
e x ≥ x + 1 , ( ∀ x ) e^x \geq x+1,(\forall x) ex≥x+1,(∀x)
x − 1 ≥ ln x , ( x > 0 ) x-1 \geq \ln x,(x>0) x−1≥lnx,(x>0)
1 x + 1 < ln ( 1 + 1 x ) < 1 x 或 x 1 + x < ln ( 1 + x ) < x , ( x > 0 ) \frac{1}{x+1} < \ln(1+\frac{1}{x}) < \frac{1}{x} 或 \frac{x}{1+x} < \ln(1+x) <x,(x>0) x+11<ln(1+x1)<x1或1+xx<ln(1+x)<x,(x>0)
压缩映射原理
原理一
对数列 { x n } \{x_n\} {xn},若存在常数 k ( 0 < k < 1 ) k(0<k<1) k(0<k<1),使得 ∣ x − a ∣ ≤ k ∣ x − a ∣ , n = 1 , 2 , . . . |x-a|\leq k|x-a|,n=1,2,... ∣x−a∣≤k∣x−a∣,n=1,2,...,则 { x } \{x\} {x}收敛于 a a a 。
证明:
0 ≤ ∣ x n + 1 − a ∣ ≤ k ∣ x n − a ∣ ≤ k 2 ∣ x n − 1 − a ∣ ≤ . . . ≤ k n ∣ x 1 − a ∣ 0 \leq |x_{n+1}-a| \leq k|x_n-a| \leq k^2|x_{n-1}-a| \leq ... \leq k_n|x_1-a| 0≤∣xn+1−a∣≤k∣xn−a∣≤k2∣xn−1−a∣≤...≤kn∣x1−a∣,由于 lim n → ∞ k = 0 \lim_{n \rightarrow \infty} k=0 limn→∞k=0,根据夹逼准则,有 lim n → ∞ ∣ x n + 1 − a ∣ = 0 \lim_{n \rightarrow \infty}|x_{n+1}-a|=0 limn→∞∣xn+1−a∣=0,即 { x } \{x\} {x}收敛于 a a a。
原理二
对数列 { x n } \{x_n\} {xn},若 x + 1 = f ( x ) , n = 1 , 2 , . . . x+1=f(x),n=1,2,... x+1=f(x),n=1,2,..., f ( x ) f(x) f(x)可导, a a a是 f ( x ) = x f(x)=x f(x)=x的唯一解,且 ∀ x ∈ R \forall x \in R ∀x∈R,有 ∣ f ′ ′ ( x ) ≤ k < 1 |f^{''}(x)\leq k<1 ∣f′′(x)≤k<1,则 { x } \{x\} {x}收敛于 a a a。
证明:
∣ x n + 1 − a ∣ = ∣ f ( x ) − f ( a ) ∣ = 拉格朗日中值定理 f ′ ( ξ ) ∣ x n − a ∣ ≤ k ∣ x − a ∣ |x_{n+1}-a|=|f(x)-f(a)|\xlongequal{拉格朗日中值定理}f^{\prime}(\xi)|x_n-a| \leq k|x-a| ∣xn+1−a∣=∣f(x)−f(a)∣拉格朗日中值定理f′(ξ)∣xn−a∣≤k∣x−a∣,其中 ξ \xi ξ介于 a a a与 x x x之间,由原理一,有 { x n } \{x_n\} {xn}收敛于 a a a。
导数的计算
基本求导公式
( x α ) ′ = α x α − 1 ( α 为常数 ) , ( a x ) ′ = a x ln a ( a > 0 , a ≠ 1 ) ( e x ) ′ = e x ( log a x ) ′ = 1 x ln a ( a > 0 , a ≠ 1 ) , ( ln ∣ x ∣ ) ′ = 1 x (x^{\alpha})^\prime=\alpha x^{\alpha -1}(\alpha 为常数) ,(a^x)^\prime=a^x\ln a(a>0,a \neq1) \\ (e^x)^\prime=e^x \\ (\log _a x)^\prime=\frac{1}{x\ln a}(a>0,a \neq1),(\ln |x|)^\prime=\frac{1}{x} (xα)′=αxα−1(α为常数),(ax)′=axlna(a>0,a=1)(ex)′=ex(logax)′=xlna1(a>0,a=1),(ln∣x∣)′=x1
( sin x ) ′ = cos x , ( cos x ) ′ = − sin x ( tan x ) ′ = sec 2 x , ( cot x ) ′ = − csc 2 x ( sec x ) ′ = sec x tan x , ( csc x ) ′ = − csc x cot x ( arcsin x ) ′ = 1 1 − x 2 , ( arccos x ) ′ = − 1 1 − x 2 ( arctan x ) ′ = 1 1 + x 2 , ( arccot x ) ′ = − 1 1 + x 2 (\sin x)^\prime = \cos x,(\cos x)^\prime =-\sin x \\ \\ (\tan x )^\prime =\sec^{2}x,(\cot x)^\prime =-\csc^{2}x \\ \\(\sec x)^\prime=\sec x\tan x,(\csc x)^\prime=-\csc x\cot x \\ \\ (\arcsin x)^\prime=\frac{1}{\sqrt{1-x^2}},(\arccos x)^\prime=-\frac{1}{\sqrt{1-x^2}} \\ \\ (\arctan x)^\prime=\frac{1}{1+x^2},(\text{arccot} \ x)^\prime=-\frac{1}{1+x^2} (sinx)′=cosx,(cosx)′=−sinx(tanx)′=sec2x,(cotx)′=−csc2x(secx)′=secxtanx,(cscx)′=−cscxcotx(arcsinx)′=1−x21,(arccosx)′=−1−x21(arctanx)′=1+x21,(arccot x)′=−1+x21
[ ln ( x + x 2 + 1 ) ] ′ = 1 x 2 + 1 , [ ln ( x + x 2 − 1 ) ] ′ = 1 x 2 − 1 [\ln (x+\sqrt{x^2+1})]^\prime=\frac{1}{\sqrt{x^2+1}},[\ln (x+\sqrt{x^2-1})]^\prime=\frac{1}{\sqrt{x^2-1}} [ln(x+x2+1)]′=x2+11,[ln(x+x2−1)]′=x2−11
常用高阶导数
( e a x + b ) ( n ) = a n e a x + b ; [ sin ( a x + b ) ] ( n ) = a n sin ( a x + b + n π 2 ) ; [ cos ( a x + b ) ] ( n ) = a n cos ( a x + b + n π 2 ) ; [ ln ( a x + b ) ] ( n ) = ( − 1 ) n − 1 a n ( n − 1 ) ! ( a x + b ) n ; ( 1 a x + b ) ( n ) = ( − 1 ) n a n n ! ( a x + b ) n + 1 . (e^{ax+b})^{(n)}=a^ne^{ax+b}; \\ \\ [\sin(ax+b)]^{(n)}=a^n \sin(ax+b+\frac{n\pi}{{2}}); \\ \\ [\cos(ax+b)]^{(n)}=a^n \cos(ax+b+\frac{n\pi}{{2}}); \\ \\ [\ln(ax+b)]^{(n)}=(-1)^{n-1}a^n\frac{(n-1)!}{(ax+b)^n}; \\ \\ (\frac{1}{ax+b})^{(n)}=(-1)^na^n\frac{n!}{(ax+b)^{n+1}}. (eax+b)(n)=aneax+b;[sin(ax+b)](n)=ansin(ax+b+2nπ);[cos(ax+b)](n)=ancos(ax+b+2nπ);[ln(ax+b)](n)=(−1)n−1an(ax+b)n(n−1)!;(ax+b1)(n)=(−1)nan(ax+b)n+1n!.
莱布尼茨公式
( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)}=\sum^n_{k=0} C_n^k u^{(n-k)} v^{(k)} (uv)(n)=k=0∑nCnku(n−k)v(k)
反函数的导数
x y ′ = 1 y x ′ , x y y ′ ′ = − y x x ′ ′ ( y x ′ ) 3 x_y^\prime=\frac{1}{y_x^\prime},x_{yy}^{\prime\prime}=-\frac{y_{xx}^{\prime\prime}}{(y_x^\prime)^3} xy′=yx′1,xyy′′=−(yx′)3yxx′′
注:其中 y = f ( x ) , x = g ( y ) y=f(x),x=g(y) y=f(x),x=g(y),注意只是反解出来了 x x x。
曲率
曲率 k = ∣ y ′ ′ ∣ [ 1 + ( y ′ ) 2 ] 3 2 曲率半径 r = 1 k 曲率k=\frac{|y^{\prime\prime}|}{[1+(y^\prime)^2]^{\frac{3}{2}}} \\ 曲率半径r=\frac{1}{k} 曲率k=[1+(y′)2]23∣y′′∣曲率半径r=k1
tips:曲线一点的曲率圆,与曲线在该点处,具有相同的一阶、二阶导数值。
伽马函数相关知识
计算积分时,若能使用上【 Γ 函数 \Gamma 函数 Γ函数】的知识,会即快速又准确。
- 定义:
Γ ( α ) = ∫ 0 + ∞ x α − 1 e − x d x = x = t 2 2 ∫ 0 + ∞ t 2 α − 1 e − t 2 d t , ( x , t > 0 ) \Gamma(\alpha)=\int ^{+ \infty} _0 x^{\alpha -1}e^{-x}dx \overset{x=t^2}{=}2\int ^{+ \infty} _0 t^{2\alpha-1}e^{-t^2}dt,(x,t>0) Γ(α)=∫0+∞xα−1e−xdx=x=t22∫0+∞t2α−1e−t2dt,(x,t>0)
以上两个定义式主要看 e e e的次方是一次还是二次进行选择。
- 递推式:
Γ ( α + 1 ) = α Γ ( α ) \Gamma(\alpha+1)=\alpha\Gamma(\alpha) Γ(α+1)=αΓ(α)
其中, Γ ( 1 ) = 1 , Γ ( 1 2 ) = π \Gamma(1)=1,\Gamma(\frac{1}{2})=\sqrt{\pi} Γ(1)=1,Γ(21)=π,故 Γ ( n + 1 ) = n ! , Γ ( 2 ) = 1 , Γ ( 5 2 ) = 3 2 ∗ 1 2 ∗ Γ ( 1 2 ) = 3 4 π \Gamma(n+1)=n!,\Gamma(2)=1,\Gamma(\frac{5}{2})=\frac{3}{2}*\frac{1}{2}*\Gamma(\frac{1}{2})=\frac{3}{4}\sqrt{\pi} Γ(n+1)=n!,Γ(2)=1,Γ(25)=23∗21∗Γ(21)=43π
积分的计算
基本积分公式
∫ x k d x = 1 k + 1 x k + 1 + C , k ≠ − 1 ; { ∫ 1 x 2 d x = − 1 x + C , ∫ 1 x d x = 2 x + C . \int x^{k} \mathrm{d}x=\frac{1}{k+1} x^{k+1}+C , k\neq-1 ;\quad\begin{cases}\int\frac{1}{x^{2}}\mathrm{d}x=-\frac{1}{x}+C ,\\\int\frac{1}{\sqrt{x}}\mathrm{d}x=2\sqrt{x}+C.\end{cases} ∫xkdx=k+11xk+1+C,k=−1;{∫x21dx=−x1+C,∫x1dx=2x+C.
∫ 1 x d x = ln ∣ x ∣ + C . \int{\frac{1}{x}}\mathrm{d}x=\ln\left|x\right|+C . ∫x1dx=ln∣x∣+C.
∫ e x d x = e x + C ; ∫ a x d x = a x ln a + C , a > 0 且 a ≠ 1. \int\mathrm{e}^{x}\mathrm{d}x=\mathrm{e}^{x}+C ; \int a^{x}\mathrm{d}x=\frac{a^{x}}{\ln a}+C , a>0 \text{且}a\neq1 . ∫exdx=ex+C;∫axdx=lnaax+C,a>0且a=1.
∫ sin x d x = − cos x + C ; ∫ cos x d x = sin x + C ; ∫ tan x d x = − ln ∣ cos x ∣ + C ; ∫ cot x d x = ln ∣ sin x ∣ + C ; ∫ d x cos x = ∫ sec x d x = ln ∣ sec x + tan x ∣ + C ; ∫ d x sin x = ∫ csc x d x = ln ∣ csc x − cot x ∣ + C ; ∫ sec 2 x d x = tan x + C ; ∫ csc 2 x d x = − cot x + C ; ∫ sec x tan x d x = sec x + C ; ∫ csc x cot x d x = − csc x + C . \int\sin x\mathrm{d}x=-\cos x+C ; \int\cos x\mathrm{d}x=\sin x+C ; \\ \int\tan x\mathrm{d}x=-\ln\left|\cos x\right|+C\:;\:\int\cot x\mathrm{d}x=\ln\left|\sin x\right|+C\:; \\ \int\frac{\mathrm{d}x}{\cos x}=\int\sec x\mathrm{d}x= \ln \left | \sec x+ \tan x\right | + C ; \\ \int\frac{\mathrm{d}x}{\sin x}=\int\csc x\mathrm{d}x= \ln \left | \csc x- \cot x\right | + C ; \\ \int \sec ^{2}x\mathrm{d}x= \tan x+ C ; \int \csc ^2x\mathrm{d}x= - \cot x+ C; \\ \int\sec x\tan x\mathrm{d}x=\sec x+C\:;\:\int\csc x\cot x\mathrm{d}x=-\csc x+C. ∫sinxdx=−cosx+C;∫cosxdx=sinx+C;∫tanxdx=−ln∣cosx∣+C;∫cotxdx=ln∣sinx∣+C;∫cosxdx=∫secxdx=ln∣secx+tanx∣+C;∫sinxdx=∫cscxdx=ln∣cscx−cotx∣+C;∫sec2xdx=tanx+C;∫csc2xdx=−cotx+C;∫secxtanxdx=secx+C;∫cscxcotxdx=−cscx+C.
{ ∫ 1 1 + x 2 d x = arctan x + C , ∫ 1 a 2 + x 2 d x = 1 a arctan x a + C ( a > 0 ) . \begin{cases}\int\frac{1}{1+x^{2}}\mathrm{d}x=\arctan x+C ,\\\int\frac{1}{a^{2}+x^{2}}\mathrm{d}x=\frac{1}{a}\arctan\frac{x}{a}+C(a>0).\end{cases} {∫1+x21dx=arctanx+C,∫a2+x21dx=a1arctanax+C(a>0).
{ ∫ 1 1 − x 2 d x = arcsin x + C , ∫ 1 a 2 − x 2 d x = arcsin x a + C ( a > 0 ) . \begin{cases}\int\frac{1}{\sqrt{1-x^{2}}}\mathrm{d}x=\arcsin x+C ,\\\int\frac{1}{\sqrt{a^{2}-x^{2}}}\mathrm{d}x=\arcsin\frac{x}{a}+C(a>0).\end{cases} {∫1−x21dx=arcsinx+C,∫a2−x21dx=arcsinax+C(a>0).
{ ∫ 1 x 2 + a 2 d x = ln ( x + x 2 + a 2 ) + C ( 常见 a = 1 ) , ∫ 1 x 2 − a 2 d x = ln ∣ x + x 2 − a 2 ∣ + C ( ∣ x ∣ > ∣ a ∣ ) . \begin{cases}\int\frac{1}{\sqrt{x^{2}+a^{2}}}\mathrm{d}x=\ln(x+\sqrt{x^{2}+a^{2}})+C(\text{常见 }a=1),\\\int\frac{1}{\sqrt{x^{2}-a^{2}}}\mathrm{d}x=\ln\left|x+\sqrt{x^{2}-a^{2}}\right|+C(\left|x\right|>\left|a\right|).\end{cases} {∫x2+a21dx=ln(x+x2+a2)+C(常见 a=1),∫x2−a21dx=ln x+x2−a2 +C(∣x∣>∣a∣).
∫ 1 x 2 − a 2 d x = 1 2 a ln ∣ x − a x + a ∣ + C ( ∫ 1 a 2 − x 2 d x = 1 2 a ln ∣ x + a x − a ∣ + C ) . \int\frac{1}{x^{2}-a^{2}}\mathrm{d}x=\frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right|+C\left(\int\frac{1}{a^{2}-x^{2}}\mathrm{d}x=\frac{1}{2a}\ln\left|\frac{x+a}{x-a}\right|+C\right) . ∫x2−a21dx=2a1ln x+ax−a +C(∫a2−x21dx=2a1ln x−ax+a +C).
∫ a 2 − x 2 d x = a 2 2 arcsin x a + x 2 a 2 − x 2 + C ( a > ∣ x ∣ ⩾ 0 ) . \int\sqrt{a^{2}-x^{2}} \mathrm{d}x=\frac{a^{2}}{2}\arcsin\frac{x}{a}+\frac{x}{2}\sqrt{a^{2}-x^{2}}+C(a>|x|\geqslant0) . ∫a2−x2dx=2a2arcsinax+2xa2−x2+C(a>∣x∣⩾0).
∫ sin 2 x d x = x 2 − sin 2 x 4 + C ( sin 2 x = 1 − cos 2 x 2 ) ; ∫ cos 2 x d x = x 2 + sin 2 x 4 + C ( cos 2 x = 1 + cos 2 x 2 ) ; \begin{gathered} \int\sin^{2}x\mathrm{d}x= \frac{x}{2}-\frac{\sin2x}{4}+C\Bigg(\sin^{2}x=\frac{1-\cos2x}{2}\Bigg) ; \\ \int\cos^2x\mathrm{d}x= \frac{x}{2}+\frac{\sin2x}{4}+C\Bigg(\cos^{2}x=\frac{1+\cos2x}{2}\Bigg) ; \end{gathered} ∫sin2xdx=2x−4sin2x+C(sin2x=21−cos2x);∫cos2xdx=2x+4sin2x+C(cos2x=21+cos2x);
∫ tan 2 x d x = tan x − x + C ( tan 2 x = sec 2 x − 1 ) ; ∫ cot 2 x d x = − cot x − x + C ( cot 2 x = csc 2 x − 1 ) \begin{gathered} \int\tan^2x\mathrm{d}x= \tan x-x+C\Bigg(\tan^2x=\sec^2x-1\Bigg) ; \\ \int\cot^2x\mathrm{d}x =-\cot x-x+C\Bigg(\cot^{2}x=\csc^{2}x-1\Bigg) \end{gathered} ∫tan2xdx=tanx−x+C(tan2x=sec2x−1);∫cot2xdx=−cotx−x+C(cot2x=csc2x−1)
∫ tan 3 x d x = 1 2 tan 2 x + ln ∣ cos x ∣ + C ∫ cos 3 x d x = − 1 2 cot 2 x + ln ∣ sin x ∣ + C \begin{aligned}&\int\tan^{3}xdx=\frac{1}{2}\tan^{2}x+\ln|\cos x|+C\\&\int\cos^{3}xdx=-\frac{1}{2}\cot^{2}x+\ln|\sin x|+C\end{aligned} ∫tan3xdx=21tan2x+ln∣cosx∣+C∫cos3xdx=−21cot2x+ln∣sinx∣+C
点火公式
∫ 0 π 2 sin n x d x = ∫ 0 π 2 cos n x d x = { n − 1 n ⋅ n − 3 n − 2 ⋅ ⋯ ⋅ 2 3 ⋅ 1 , n 为大于 1 的奇数 , n − 1 n ⋅ n − 3 n − 2 ⋅ ⋯ ⋅ 1 2 ⋅ π 2 , n 为正偶数 . \int_{0}^{\frac{\pi}{2} }\sin ^n x dx= \int_{0}^{\frac{\pi}{2} }\cos ^n x dx= \left\{\begin{matrix} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{2}{3} \cdot 1 ,& n为大于1的奇数,\\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & n为正偶数. \end{matrix}\right. ∫02πsinnxdx=∫02πcosnxdx={nn−1⋅n−2n−3⋅⋯⋅32⋅1,nn−1⋅n−2n−3⋅⋯⋅21⋅2π,n为大于1的奇数,n为正偶数.
∫ 0 π sin n x d x = { 2 ⋅ n − 1 n ⋅ n − 3 n − 2 ⋅ ⋯ ⋅ 2 3 ⋅ 1 , n 为大于 1 的奇数 , 2 ⋅ n − 1 n ⋅ n − 3 n − 2 ⋅ ⋯ ⋅ 1 2 ⋅ π 2 , n 为正偶数 . \int_{0}^{\pi}\sin ^n x dx= \left\{\begin{matrix} 2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{2}{3} \cdot 1, & n为大于1的奇数,\\ 2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & n为正偶数. \end{matrix}\right. ∫0πsinnxdx={2⋅nn−1⋅n−2n−3⋅⋯⋅32⋅1,2⋅nn−1⋅n−2n−3⋅⋯⋅21⋅2π,n为大于1的奇数,n为正偶数.
∫ 0 π cos n x d x = { 0 , n 为正奇数 , 2 ⋅ n − 1 n ⋅ n − 3 n − 2 ⋅ ⋯ ⋅ 1 2 ⋅ π 2 , n 为正偶数 . \int_{0}^{\pi}\cos ^n x dx= \left\{\begin{matrix} 0, & n为正奇数,\\ 2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & n为正偶数. \end{matrix}\right. ∫0πcosnxdx={0,2⋅nn−1⋅n−2n−3⋅⋯⋅21⋅2π,n为正奇数,n为正偶数.
∫ 0 2 π cos n x d x = ∫ 0 2 π sin n x d x = { 0 , n 为正奇数 , 4 ⋅ n − 1 n ⋅ n − 3 n − 2 ⋅ ⋯ ⋅ 1 2 ⋅ π 2 , n 为正偶数 . \int_{0}^{2\pi}\cos ^n x dx=\int_{0}^{2\pi}\sin ^n x dx =\left\{\begin{matrix} 0, & n为正奇数,\\ 4 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & n为正偶数. \end{matrix}\right. ∫02πcosnxdx=∫02πsinnxdx={0,4⋅nn−1⋅n−2n−3⋅⋯⋅21⋅2π,n为正奇数,n为正偶数.
带有三角函数的积分凑微分方法
形如 ∫ p ( sin x , cos x ) d x \int p(\sin x,\cos x)dx ∫p(sinx,cosx)dx的积分
若:
- P ( − sin x , cos x ) = − P ( sin x , cos x ) P(-\sin x,\cos x)=-P(\sin x,\cos x) P(−sinx,cosx)=−P(sinx,cosx),凑 d cos x d\cos x dcosx
- P ( sin x , − cos x ) = − P ( sin x , cos x ) P(\sin x,-\cos x)=-P(\sin x,\cos x) P(sinx,−cosx)=−P(sinx,cosx),凑 d sin x d\sin x dsinx
- P ( − sin x , − cos x ) = P ( sin x , cos x ) P(-\sin x,-\cos x)=P(\sin x,\cos x) P(−sinx,−cosx)=P(sinx,cosx),凑 d tan x d\tan x dtanx
x与f(sin x)乘积的积分
举例,如, ∫ 0 π x f ( sin x ) d x = π 2 ∫ 0 π f ( sin x ) \int ^\pi_0 xf(\sin x)dx=\frac{\pi}{2}\int^\pi_0f(\sin x) ∫0πxf(sinx)dx=2π∫0πf(sinx)
平均放大倍数
f
(
x
)
,
g
(
x
)
f(x),g(x)
f(x),g(x)在
R
R
R上连续,
g
(
x
)
g(x)
g(x)为偶函数,
f
(
x
)
+
f
(
−
x
)
=
C
f(x)+f(-x)=C
f(x)+f(−x)=C,
∫
−
a
a
g
(
x
)
d
x
=
A
\int_{-a}^{a}g(x)dx=A
∫−aag(x)dx=A,求
∫
−
a
a
f
(
x
)
g
(
x
)
d
x
\int_{-a}^{a}f(x)g(x)dx
∫−aaf(x)g(x)dx。
I
2
=
∫
−
a
a
f
(
x
)
g
(
x
)
d
x
I
1
=
∫
a
−
a
f
(
−
t
)
g
(
−
t
)
(
−
d
t
)
=
∫
−
a
a
f
(
−
t
)
g
(
t
)
d
t
=
∫
−
a
a
f
(
−
x
)
g
(
x
)
d
x
I
=
1
2
(
I
1
+
I
2
)
=
1
2
∫
−
a
a
[
f
(
x
)
+
f
(
−
x
)
]
g
(
x
)
d
x
=
1
2
∫
−
a
a
C
g
(
x
)
d
x
=
C
2
A
I_{2}=\int_{-a}^{a}f(x)g(x)dx \\I_{1}=\int_{a}^{-a}f(-t)g(-t)(-dt) =\int_{-a}^{a}f(-t)g(t)dt =\int_{-a}^{a}f(-x)g(x)dx \\I=\frac{1}{2}(I_{1}+I_{2})=\frac{1}{2}\int_{-a}^{a}[f(x)+f(-x)]g(x)dx =\frac{1}{2}\int_{-a}^{a}Cg(x)dx=\frac{C}{2}A
I2=∫−aaf(x)g(x)dxI1=∫a−af(−t)g(−t)(−dt)=∫−aaf(−t)g(t)dt=∫−aaf(−x)g(x)dxI=21(I1+I2)=21∫−aa[f(x)+f(−x)]g(x)dx=21∫−aaCg(x)dx=2CA
三角函数与e^x的积分
∫ e a x sin b x d x = ∣ ( e a x ) ′ ( sin b x ) ′ e a x sin b x ∣ a 2 + b 2 + C \int e^{ax}\sin bx dx = \frac{\begin{vmatrix} (e^{ax})^\prime & (\sin bx)^\prime \\ e^{ax} & \sin bx \end{vmatrix}}{a^2+b^2} +C ∫eaxsinbxdx=a2+b2 (eax)′eax(sinbx)′sinbx +C
∫ e a x cos b x d x = ∣ ( e a x ) ′ ( cos b x ) ′ e a x cos b x ∣ a 2 + b 2 + C \int e^{ax}\cos bx dx = \frac{\begin{vmatrix} (e^{ax})^\prime & (\cos bx)^\prime \\ e^{ax} & \cos bx \end{vmatrix}}{a^2+b^2} +C ∫eaxcosbxdx=a2+b2 (eax)′eax(cosbx)′cosbx +C
反三角函数相关等式
arcsin x + arccos x = π 2 arctan x + arccot x = π 2 arctan x + arctan 1 x = { π 2 , x > 0 , π 2 , x < 0. arccos x + arccos ( − x ) = π arccot x + arccot ( − x ) = π \arcsin x + \arccos x = \frac{\pi}{2} \\ \arctan x + \text{arccot}\ x = \frac{\pi}{2} \\ \arctan x + \arctan \frac{1}{x} = \left\{\begin{matrix} \frac{\pi}{2}, & x>0,\\ \frac{\pi}{2}, & x<0. \end{matrix}\right. \\ \arccos x + \arccos (-x) = \pi \\ \text{arccot}\ x +\text{arccot}\ (-x) = \pi arcsinx+arccosx=2πarctanx+arccot x=2πarctanx+arctanx1={2π,2π,x>0,x<0.arccosx+arccos(−x)=πarccot x+arccot (−x)=π
积分学的几何应用
平面图形面积
- 曲线 y = y 1 ( x ) y=y_{1}(x) y=y1(x) 与 y = y 2 ( x ) y=y_{2}(x) y=y2(x)及 x = a , x = b ( a < b ) x=a,x=b(a<b) x=a,x=b(a<b)所围成的平面图形的面积:
S = ∫ a b ∣ y 1 ( x ) − y 2 ( x ) ∣ d x . S=\int_{a}^{b}\left|y_{1}(x)-y_{2}(x)\right| \mathrm{d} x . S=∫ab∣y1(x)−y2(x)∣dx.
- 曲线 r = r 1 ( θ ) r=r_1(\theta) r=r1(θ)与 r = r 2 ( θ ) r=r_2(\theta) r=r2(θ)与两射线 θ = α \theta=\alpha θ=α与 θ = β ( 0 < β − α ⩽ 2 π ) \theta=\beta(0<\beta-\alpha\leqslant2\pi) θ=β(0<β−α⩽2π)所围成的曲边扇形的面积:
S = 1 2 ∫ α β ∣ r 1 2 ( θ ) − r 2 2 ( θ ) ∣ d θ . S=\frac{1}{2}\int_{\alpha}^{\beta}\left|r_{1}^{2}(\theta)-r_{2}^{2}(\theta)\right|\mathrm{d}\theta . S=21∫αβ r12(θ)−r22(θ) dθ.
旋转体体积
1.曲线
y
=
y
(
x
)
y=y(x)
y=y(x)与
x
=
a
,
x
=
b
(
a
<
b
)
x=a,x=b(a<b)
x=a,x=b(a<b)及
x
x
x轴围成的曲边梯形绕
x
x
x轴旋转一周所得到的旋转体的体积:
V
x
=
∫
a
b
π
y
2
(
x
)
d
x
.
V_x=\int_a^b\pi y^2(x)\mathrm{d}x .
Vx=∫abπy2(x)dx.
2.曲线
y
=
y
(
x
)
y=y(x)
y=y(x)与
x
=
a
,
x
=
b
(
0
⩽
a
<
b
)
x=a,x=b(0\leqslant a<b)
x=a,x=b(0⩽a<b)及
x
x
x轴围成的曲边梯形绕
y
y
y轴旋转一周所得到的旋转体的体积:
V
y
=
2
π
∫
a
b
x
∣
y
(
x
)
∣
d
x
.
V_y=2\pi\int_a^bx\big|y(x)\big|\mathrm{d}x .
Vy=2π∫abx
y(x)
dx.
- 平面曲线绕定直线旋转
设平面曲线 L : y = f ( x ) , a ⩽ x ⩽ b L:y=f(x),a\leqslant x\leqslant b L:y=f(x),a⩽x⩽b,且 f ( x ) f(x) f(x)可导.
定直线
L
0
:
A
x
+
B
y
+
C
=
0
L_0:Ax+By+C=0
L0:Ax+By+C=0 ,且过
L
0
L_0
L0的任一条垂线与
L
L
L 至多有一个交点,则
L
L
L绕
L
0
L_0
L0旋转一周所得旋转体的体积为:
V
=
π
(
A
2
+
B
2
)
3
2
∫
a
b
[
A
x
+
B
f
(
x
)
+
C
]
2
∣
A
f
′
(
x
)
−
B
∣
d
x
.
V=\frac{\pi}{(A^2+B^2)^{\frac{3}{2}}}\int_{a}^{b}\bigl[Ax+Bf(x)+C\bigr]^{2}\bigl|Af'(x)-B\bigr|\mathrm{d}x\:.
V=(A2+B2)23π∫ab[Ax+Bf(x)+C]2
Af′(x)−B
dx.
函数平均值
设
x
∈
[
a
,
b
]
,
x\in[a,b],
x∈[a,b], 函数
y
(
x
)
y(x)
y(x)在
[
a
,
b
]
[a,b]
[a,b]上的平均值为:
y
‾
=
1
b
−
a
∫
a
b
y
(
x
)
d
x
.
\overline{y}=\frac{1}{b-a}\int_{a}^{b}y(x)\mathrm{d}x .
y=b−a1∫aby(x)dx.
其他几何应用
- “平面上的曲边梯形”的形心坐标公式
x ‾ = ∬ D x d σ ∬ D d σ = ∫ a b d x ∫ 0 f ( x ) x d y ∫ a b d x ∫ 0 f ( x ) d y = ∫ a b x f ( x ) d x ∫ a b f ( x ) d x ; \overline{x}=\frac{\iint_{D}x\mathrm{d}\sigma}{\iint_{D}\mathrm{d}\sigma}=\frac{\int_{a}^{b}\mathrm{d}x\int_{0}^{f(x)}x\mathrm{d}y}{\int_{a}^{b}\mathrm{d}x\int_{0}^{f(x)}\mathrm{d}y}=\frac{\int_{a}^{b}xf(x)\mathrm{d}x}{\int_{a}^{b}f(x)\mathrm{d}x} ; x=∬Ddσ∬Dxdσ=∫abdx∫0f(x)dy∫abdx∫0f(x)xdy=∫abf(x)dx∫abxf(x)dx;
y ‾ = ∬ D y d σ ∬ D d σ = ∫ a b d x ∫ 0 f ( x ) y d y ∫ a b d x ∫ 0 f ( x ) d y = 1 2 ∫ a b f 2 ( x ) d x ∫ a b f ( x ) d x . \overline{y}=\frac{\iint\limits_Dy\mathrm{d}\sigma}{\iint\limits_D\mathrm{d}\sigma}=\frac{\int_a^b\mathrm{d}x\int_0^{f(x)}y\mathrm{d}y}{\int_a^b\mathrm{d}x\int_0^{f(x)}\mathrm{d}y}=\frac{\frac{1}{2}\int_a^bf^2(x)\mathrm{d}x}{\int_a^bf(x)\mathrm{d}x} . y=D∬dσD∬ydσ=∫abdx∫0f(x)dy∫abdx∫0f(x)ydy=∫abf(x)dx21∫abf2(x)dx.
-
平面曲线的弧长.
- 若平面光滑曲线由直角坐标方程 y = y ( x ) ( a ⩽ x ⩽ b ) y=y(x)(a\leqslant x\leqslant b) y=y(x)(a⩽x⩽b)给出,则 s = ∫ a b 1 + [ y ′ ( x ) ] 2 s=\int_a^b\sqrt{1+[y^{\prime}(x)]^2} s=∫ab1+[y′(x)]2d x . x. x.
- 若平面光滑曲线由参数方程 { x = x ( t ) , y = y ( t ) ( α ⩽ t ⩽ β ) \begin{cases}x=x(t),\\y=y(t)\end{cases}(\alpha\leqslant t\leqslant\beta) {x=x(t),y=y(t)(α⩽t⩽β)给出,则 s = ∫ α β [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 d t . s=\int_{\alpha}^{\beta}\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}}\mathrm{d}t . s=∫αβ[x′(t)]2+[y′(t)]2dt.
- 若平面光滑曲线由极坐标方程 r = r ( θ ) ( α ⩽ θ ⩽ β ) r=r(\theta)(\alpha\leqslant\theta\leqslant\beta) r=r(θ)(α⩽θ⩽β)给出,则 s = ∫ α β [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2 d θ . s=\int_{\alpha}^{\beta}\sqrt{\left[r(\theta)\right]^{2}+\left[r^{\prime}(\theta)\right]^{2}}\mathrm{d}\theta . s=∫αβ[r(θ)]2+[r′(θ)]2dθ.
-
旋转曲面的面积(侧面积).
- 曲线
L
:
y
=
f
(
x
)
,
a
⩽
x
⩽
b
L:y=f(x),a\leqslant x\leqslant b
L:y=f(x),a⩽x⩽b,绕
x
x
x轴旋转一周所得旋转曲面的面积
S = 2 π ∫ a b ∣ y ∣ 1 + ( y x ′ ) 2 d x . S=2\pi\int_a^b|y|\sqrt{1+(y_x^{\prime})^2}\mathrm{d}x\:. S=2π∫ab∣y∣1+(yx′)2dx. - 曲线L:
{
x
=
x
(
t
)
,
y
=
y
(
t
)
,
α
⩽
t
⩽
β
,
\begin{cases} x= x( t) , \\ y= y( t) , & \end{cases} \alpha \leqslant t\leqslant \beta ,
{x=x(t),y=y(t),α⩽t⩽β,
x
′
(
t
)
≠
0
x^\prime( t) \neq0
x′(t)=0,绕
x
x
x轴旋转一周所得旋转曲面的面积
S = 2 π ∫ α β ∣ y ( t ) ∣ ( x t ′ ) 2 + ( y t ′ ) 2 d t . S=2\pi\int_{\alpha}^{\beta}\bigl|y(t)\bigr|\sqrt{(x_{t}^{\prime})^{2}+(y_{t}^{\prime})^{2}}\mathrm{d}t\:. S=2π∫αβ y(t) (xt′)2+(yt′)2dt. - 曲线
L
:
r
=
r
(
θ
)
,
α
⩽
θ
⩽
β
L:r=r(\theta),\alpha\leqslant\theta\leqslant\beta
L:r=r(θ),α⩽θ⩽β,绕
x
x
x轴旋转一周所得旋转曲面的面积
S = 2 π ∫ α β ∣ r ( θ ) sin θ ∣ r 2 ( θ ) + [ r ′ ( θ ) ] 2 d θ . S=2\pi\int_\alpha^\beta|r(\theta)\sin\theta|\sqrt{r^2(\theta)+[r^{\prime}(\theta)]^2}\mathrm{d}\theta\:. S=2π∫αβ∣r(θ)sinθ∣r2(θ)+[r′(θ)]2dθ.
- 曲线
L
:
y
=
f
(
x
)
,
a
⩽
x
⩽
b
L:y=f(x),a\leqslant x\leqslant b
L:y=f(x),a⩽x⩽b,绕
x
x
x轴旋转一周所得旋转曲面的面积
-
平行截面面积为已知的立体体积.
在区间
[
a
,
b
]
[a,b]
[a,b]上,垂直于
x
x
x轴的平面截立体
Ω
\Omega
Ω所得到的截面面积为
x
x
x的连续函数
A
(
x
)
A(x)
A(x),则
Ω
\Omega
Ω的体积为:
V
=
∫
a
b
A
(
x
)
d
x
.
V=\int_a^bA(x)\mathrm{d}x\:.
V=∫abA(x)dx.
最远(近)点的垂线定理
- 如果 Γ \Gamma Γ是光滑闭曲线,点 Q Q Q是 Γ \Gamma Γ外的一个点,点 P 1 , P 2 P_1,P_2 P1,P2分别是 Γ \Gamma Γ上与点 Q Q Q最远点、最近点,则直线 P 1 Q , P 2 Q P_1Q,P_2Q P1Q,P2Q分别在点 P 1 P_1 P1处,点 P 2 P_2 P2处与 Γ \Gamma Γ垂直,即 P 1 Q , P 2 Q P_1Q,P_2Q P1Q,P2Q分别与点 P 1 , P 2 P_1,P_2 P1,P2的切线垂直。
即一个光滑闭曲线,一个曲线外的点 Q Q Q, Q Q Q到最远点与最近点的连线与其切线垂直。
- 若光滑闭曲线 Γ 1 , Γ 2 \Gamma_1,\Gamma_2 Γ1,Γ2不相交,点 P 1 , P 2 P_1,P_2 P1,P2分别是它们之间的最远(近)点,则直线 P 1 P 2 P_1P_2 P1P2是 Γ 1 , Γ 2 \Gamma_1,\Gamma_2 Γ1,Γ2的公垂线,即 P 1 P 2 P_1P_2 P1P2同时垂直于 Γ 1 , Γ 2 \Gamma_1,\Gamma_2 Γ1,Γ2在这两个点处的切线。
即两个光滑闭曲线,最远/最近点的连线与其各自切垂直。
中值定理
罗尔定理的辅助函数构造
- 见到 f ( x ) f ′ ( x ) f(x)f^\prime(x) f(x)f′(x),令 F ( x ) = f 2 ( x ) F(x)=f^2(x) F(x)=f2(x)
- 见到 [ f ( x ) ] 2 + f ( x ) f ′ ′ ( x ) [f(x)]^2+f(x)f^{\prime\prime}(x) [f(x)]2+f(x)f′′(x),令 F ( x ) = f ( x ) f ′ ( x ) F(x)=f(x)f^\prime(x) F(x)=f(x)f′(x)
- 见到 f ′ ( x ) + φ ′ ( x ) f^\prime(x)+\varphi^\prime(x) f′(x)+φ′(x),令 F ( x ) = f ( x ) e φ ( x ) F(x)=f(x)e^{\varphi(x)} F(x)=f(x)eφ(x)
- 见到 f ′ ( x ) x − f ( x ) f^\prime(x)x-f(x) f′(x)x−f(x),令 F ( x ) = f ( x ) x F(x)=\frac{f(x)}{x} F(x)=xf(x)
实际上,这些辅助函数的构造不仅仅限于罗尔定理的使用。
如果需要构造辅助函数,可以根据题设函数,对其积分,构造辅助函数。
拉格朗日中值定理
见到 f ( a ) − f ( b ) f(a)-f(b) f(a)−f(b)或 f f f与 f ′ f^\prime f′的关系,一般想到用拉格朗日中值定理。
微分方程
微分方程解的结构
- 非齐次通解 = = =齐次通解 + + +非齐次特解
- 非齐次解 − - −非齐次解 = = =齐次解
- 非齐次解 ± \pm ±齐次解 = = =非齐次解
- 齐次解 ± \pm ±齐次解 = = =齐次解
- k 1 k_1 k1非齐次解 + + + k 2 k_2 k2非齐次解 = = =非齐次解(其中 k 1 + k 2 = 1 k_1+k_2=1 k1+k2=1)
某些题设隐含条件和解题结论
题设隐含条件
- f ( x + y ) = f ( x ) + f ( y ) f(x+y)=f(x)+f(y) f(x+y)=f(x)+f(y)是奇函数
- f ( x ) = f ( x − π ) + sin x f(x)=f(x- \pi)+\sin x f(x)=f(x−π)+sinx是 2 π 2\pi 2π为周期的周期函数
- 证必要性即证条件能推出结论,证充分性即证明结论能推出条件
- 条件能推出结论,称条件是结论的充分条件;结论能推出条件,称条件是结论的必要条件
解题结论
- 若 lim f ( x ) g ( x ) = A , 且 lim g ( x ) = 0 , 则 lim f ( x ) = 0 若 \lim \frac{f(x)}{g(x)}=A,且\lim g(x)=0,则\lim f(x)=0 若limg(x)f(x)=A,且limg(x)=0,则limf(x)=0
- 若 lim f ( x ) g ( x ) = A ≠ 0 , 且 lim f ( x ) = 0 , 则 lim g ( x ) = 0 若 \lim \frac{f(x)}{g(x)}=A \neq 0,且\lim f(x)=0,则\lim g(x)=0 若limg(x)f(x)=A=0,且limf(x)=0,则limg(x)=0
- 当 a > 1 时 , 形如 1 a x + 1 − 1 2 , a x − 1 a x + 1 均为奇函数 当a >1时,形如\frac{1}{a^x+1}-\frac{1}{2},\frac{a^x-1}{a^x+1}均为奇函数 当a>1时,形如ax+11−21,ax+1ax−1均为奇函数
- 若 φ ( x ) 在 x = x 0 处连续,则 f ( x ) = ∣ x − x 0 ∣ φ ( x ) 在点 x 0 处可导的充分必要条件是 φ ( x 0 ) = 0 若\varphi(x)在x=x_0处连续,则f(x)=|x-x_0|\varphi(x)在点x_0处可导的充分必要条件是\varphi(x_0)=0 若φ(x)在x=x0处连续,则f(x)=∣x−x0∣φ(x)在点x0处可导的充分必要条件是φ(x0)=0
- 函数 f ( x ) = ( x − x 0 ) k ∣ x − x 0 ∣ 在 x = x 0 处最多 k 阶可导 函数f(x)=(x-x_0)^k|x-x_0|在x=x_0处最多k阶可导 函数f(x)=(x−x0)k∣x−x0∣在x=x0处最多k阶可导
- 曲线的可导点不能同时为极值点和拐点,不可导点可以同时为极值点和拐点 曲线的可导点不能同时为极值点和拐点,不可导点可以同时为极值点和拐点 曲线的可导点不能同时为极值点和拐点,不可导点可以同时为极值点和拐点
- 设 f ( x ) = ( x − a ) n g ( x ) ( n > 1 ) , 且 g ( a ) ≠ 0 , 则当 n 为偶数时, x = a 时 f ( x ) 的极值点 ; 当 n 为奇数时,点 ( a , 0 ) 是曲线的拐点 设f(x)=(x-a)^ng(x)(n>1),且g(a)\neq 0,则当n为偶数时,x=a时f(x)的极值点;当n为奇数时,点(a,0)是曲线的拐点 设f(x)=(x−a)ng(x)(n>1),且g(a)=0,则当n为偶数时,x=a时f(x)的极值点;当n为奇数时,点(a,0)是曲线的拐点
- 设 f ( x ) = ( x − a 1 ) n 1 ( x − a 2 ) n 2 . . . ( x − a k ) n k , 其中 n i 是正整数 , a i 是实数且两两不相等 , i = 1 , 2 , . . . , k . 设f(x)=(x-a_1)^{n_1}(x-a_2)^{n_2}...(x-a_k)^{n_k},其中n_i是正整数,a_i是实数且两两不相等,i=1,2,...,k. 设f(x)=(x−a1)n1(x−a2)n2...(x−ak)nk,其中ni是正整数,ai是实数且两两不相等,i=1,2,...,k. 记 k 1 为 n i = 1 的个数 , k 2 为 n i > 1 且为偶数的个数 , k 3 为 n i > 1 且为奇数的个数 , 则 f ( x ) 的极值点个数为 k 1 + 2 k 2 + k 3 − 1 , 拐点个数为 k 1 + 2 k 2 + 3 k 3 − 2 记k_1为n_i=1的个数,k_2为n_i>1且为偶数的个数,k_3为n_i>1且为奇数的个数,则f(x)的极值点个数为k_1+2k_2+k_3-1,拐点个数为k_1+2k_2+3k_3-2 记k1为ni=1的个数,k2为ni>1且为偶数的个数,k3为ni>1且为奇数的个数,则f(x)的极值点个数为k1+2k2+k3−1,拐点个数为k1+2k2+3k3−2