机械臂强化学习抓取系统

机械臂强化学习抓取系统

项目概述

本项目实现了一个基于Rainbow-DDPG算法的机械臂抓取系统,旨在训练UR机械臂配合Epick吸盘式夹爪进行物体抓取任务。通过强化学习,机械臂能够自主学习如何抓取不同类型的物体(如玻璃杯、橡胶物体或堆叠物体)。

主要特性

  • 基于PyBullet的物理模拟环境
  • 改进版Rainbow-DDPG算法实现
    • 双Q网络架构
    • 优先级经验回放
    • n步TD学习
    • 目标策略平滑
  • 可视化Web界面实时监控训练过程
  • 支持不同类型物体的抓取训练
  • 模型训练与评估模块
  • CPU/GPU训练支持

环境配置

依赖项

项目依赖以下主要库:

  • TensorFlow >= 2.19.0
  • PyBullet
  • NumPy
  • Matplotlib
  • Flask (用于Web可视化)

完整依赖列表见RL_grasp_training/requirements.txt文件。

安装

# 安装依赖
pip install -r RL_grasp_training/requirements.txt

代码结构

  • RL_grasp_training/: 主项目目录
    • train.py: 训练入口脚本
    • rainbow_ddpg.py: Rainbow-DDPG算法实现
    • urenv.py: UR机械臂环境封装
    • web_visualizer.py: Web可视化界面
    • nmpc.py: 模型预测控制器(用于演示数据生成)
    • demo.py: 演示脚本
    • robot_description/: 机械臂URDF描述文件
    • templates/: Web界面模板

使用指南

训练模型

cd RL_grasp_training
python3 train.py --object_type glass --render --episodes 100 --max_steps 150 --noise_std 0.3 --model_dir trained_models_name --log_dir training_logs_name

主要参数说明:

  • --object_type: 目标物体类型(glass/rubber/stack)
  • --render: 是否渲染环境(无GUI)
  • --episodes: 训练回合数
  • --max_steps: 每回合最大步数
  • --noise_std: 探索噪声标准差
  • --model_dir: 模型保存目录
  • --log_dir: 日志保存目录

更多参数详见train.py中的parse_args函数。

使用Web可视化工具

cd RL_grasp_training
python3 web_visualizer.py

然后在浏览器中访问http://localhost:5000查看训练过程的实时可视化。

使用预训练模型

cd RL_grasp_training
python3 train.py --object_type glass --render --load_model --model_dir trained_models/latest --episodes 10

模型会从指定目录加载,并进行评估或继续训练。

性能调优

  • 增加noise_std参数可以提高探索能力,有助于找到更好的策略
  • 调整actor_lrcritic_lr参数可以改变学习速率
  • 增加max_steps参数可以让每回合有更多时间完成抓取动作
  • GPU训练比CPU训练速度快很多,建议在有GPU的环境中运行

实验结果

在默认参数下,算法在约100回合后可以达到一定的成功率。调整参数后,我们观察到:

  • 增加噪声标准差到0.3-0.4有助于提高成功率
  • 使用密集奖励(dense reward)比稀疏奖励(sparse reward)效果更好
  • 训练时的抓取成功率有一定波动,这是强化学习探索过程的正常现象

注意事项

  • 训练过程中可能会遇到模型崩溃的情况,这通常是由于物理模拟中的碰撞处理导致
  • 建议使用较新版本的TensorFlow以获得更好的性能
  • 在Docker环境中运行时,GPU配置可能需要额外设置
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值