题目描述
小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共 m 盆。通过调查顾客的喜好,小明列出了顾客最喜欢的 n 种花,从 1 到 n 标号。为了在门口展出更多种花,规定第 ii 种花不能超过 ai 盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列。
试编程计算,一共有多少种不同的摆花方案。
输入格式
第一行包含两个正整数 n 和 m,中间用一个空格隔开。
第二行有 n 个整数,每两个整数之间用一个空格隔开,依次表示 ai。
输出格式
一个整数,表示有多少种方案。注意:因为方案数可能很多,请输出方案数对 10^6+7106+7 取模的结果。
输入输出样例
输入 #1
2 4 3 2
输出 #1
2
说明/提示
NOIP 2012 普及组 第三题
DP:状态转移方程:f [ i ][ j ] = f[ i ][ j ] + f[ i - 1 ][ j - k ]
CODE
#include <iostream>
using namespace std;
int n, m, a[101], f[101][101];
const int MOD = 1000007;
int main(){
cin >> n >> m;
for(int i=1; i<=n; i++)
cin >> a[i];
f[0][0] = 1;
for(int i=1; i<=n; i++)
for(int j=0; j<=m; j++)
for(int k=0; k<=min(a[i], j); k++)
f[i][j] = (f[i][j] + f[i-1][j-k]) % MOD;
cout << f[n][m] << endl;
return 0;
}