P1077 [NOIP2012 普及组] 摆花(洛谷水题记)

这篇博客介绍了一道编程题目,涉及到小明的花店如何根据顾客喜好和限制条件摆放花卉,以展示最多的花卉种类。文章通过动态规划算法来计算可能的摆花方案数量,并给出了具体的代码实现。该算法利用状态转移方程求解,对于理解动态规划和编程解决问题具有一定的参考价值。
摘要由CSDN通过智能技术生成

题目描述

小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共 m 盆。通过调查顾客的喜好,小明列出了顾客最喜欢的 n 种花,从 1 到 n 标号。为了在门口展出更多种花,规定第 ii 种花不能超过 ai 盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列。

试编程计算,一共有多少种不同的摆花方案。

输入格式

第一行包含两个正整数 n 和 m,中间用一个空格隔开。

第二行有 n 个整数,每两个整数之间用一个空格隔开,依次表示 ai​。

输出格式

一个整数,表示有多少种方案。注意:因为方案数可能很多,请输出方案数对 10^6+7106+7 取模的结果。

输入输出样例

输入 #1

2 4
3 2

输出 #1

2

说明/提示

NOIP 2012 普及组 第三题

DP:状态转移方程:f [ i ][ j ] = f[ i ][ j ] + f[ i - 1 ][ j - k ]

CODE

#include <iostream>
using namespace std;
int n, m, a[101], f[101][101];
const int MOD = 1000007;
int main(){
	cin >> n >> m;
	for(int i=1; i<=n; i++)
		cin >> a[i];
	f[0][0] = 1;
	for(int i=1; i<=n; i++)
		for(int j=0; j<=m; j++)
			for(int k=0; k<=min(a[i], j); k++)
				f[i][j] = (f[i][j] + f[i-1][j-k]) % MOD;
	cout << f[n][m] << endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值