全卷积网络(FCN)实战:使用FCN实现语义分割

with open(os.path.join(txt_path), “r”) as f:

file_names = [x.strip() for x in f.readlines() if len(x.strip()) > 0]

self.images = [os.path.join(image_dir, x + “.jpg”) for x in file_names]

self.masks = [os.path.join(mask_dir, x + “.png”) for x in file_names]

assert (len(self.images) == len(self.masks))

self.transforms = transforms

导入需要的包。

定义VOC数据集读取类VOCSegmentation。在init方法中,核心是读取image列表和mask列表。

def getitem(self, index):

img = Image.open(self.images[index]).convert(‘RGB’)

target = Image.open(self.masks[index])

if self.transforms is not None:

img, target = self.transforms(img, target)

return img, target

__getitem__方法是获取单张图片和图片对应的mask,然后对其做数据增强。

def collate_fn(batch):

images, targets = list(zip(*batch))

batched_imgs = cat_list(images, fill_value=0)

batched_targets = cat_list(targets, fill_value=255)

return batched_imgs, batched_targets

collate_fn方法是对一个batch中数据调用cat_list做数据对齐。

在train.py中torch.utils.data.DataLoader调用

train_loader = torch.utils.data.DataLoader(train_dataset,

batch_size=batch_size,

num_workers=num_workers,

shuffle=True,

pin_memory=True,

collate_fn=train_dataset.collate_fn)

val_loader = torch.utils.data.DataLoader(val_dataset,

batch_size=1,

num_workers=num_workers,

pin_memory=True,

collate_fn=val_dataset.collate_fn)

训练

=============================================================

重要参数


打开train.py,我们先认识一下重要的参数:

def parse_args():

import argparse

parser = argparse.ArgumentParser(description=“pytorch fcn training”)

数据集的根目录(VOCdevkit)所在的文件夹

parser.add_argument(“–data-path”, default=“data/”, help=“VOCdevkit root”)

parser.add_argument(“–num-classes”, default=20, type=int)

parser.add_argument(“–aux”, default=True, type=bool, help=“auxilier loss”)

parser.add_argument(“–device”, default=“cuda”, help=“training device”)

parser.add_argument(“-b”, “–batch-size”, default=32, type=int)

parser.add_argument(“–epochs”, default=30, type=int, metavar=“N”,

help=“number of total epochs to train”)

parser.add_argument(‘–lr’, default=0.0001, type=float, help=‘initial learning rate’)

parser.add_argument(‘–momentum’, default=0.9, type=float, metavar=‘M’,

help=‘momentum’)

parser.add_argument(‘–wd’, ‘–weight-decay’, default=1e-4, type=float,

metavar=‘W’, help=‘weight decay (default: 1e-4)’,

dest=‘weight_decay’)

parser.add_argument(‘–print-freq’, default=10, type=int, help=‘print frequency’)

parser.add_argument(‘–resume’, default=‘’, help=‘resume from checkpoint’)

parser.add_argument(‘–start-epoch’, default=0, type=int, metavar=‘N’,

help=‘start epoch’)

是否使用混合精度训练

parser.add_argument(“–amp”, default=False, type=bool,

help=“Use torch.cuda.amp for mixed precision training”)

args = parser.parse_args()

return args

data-path:定义数据集的根目录(VOCdevkit)所在的文件夹

num-classes:检测目标类别数(不包含背景)。

aux:是否使用aux_classifier。

device:使用cpu还是gpu训练,默认是cuda。

batch-size:BatchSize设置。

epochs:epoch的个数。

lr:学习率。

resume:继续训练时候,选择用的模型。

start-epoch:起始的epoch,针对再次训练时,可以不需要从0开始。

amp:是否使用torch的自动混合精度训练。

数据增强


增强调用transforms.py中的方法。

训练集的增强如下:

class SegmentationPresetTrain:

def init(self, base_size, crop_size, hflip_prob=0.5, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):

随机Resize的最小尺寸

min_size = int(0.5 * base_size)

随机Resize的最大尺寸

max_size = int(2.0 * base_size)

随机Resize增强。

trans = [T.RandomResize(min_size, max_size)]

if hflip_prob > 0:

#随机水平翻转

trans.append(T.RandomHorizontalFlip(hflip_prob))

trans.extend([

#随机裁剪

T.RandomCrop(crop_size),

T.ToTensor(),

T.Normalize(mean=mean, std=std),

])

self.transforms = T.Compose(trans)

def call(self, img, target):

return self.transforms(img, target)

训练集增强,包括随机Resize、随机水平翻转、随即裁剪。

验证集增强:

class SegmentationPresetEval:

def init(self, base_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):

self.transforms = T.Compose([

T.RandomResize(base_size, base_size),

T.ToTensor(),

T.Normalize(mean=mean, std=std),

])

def call(self, img, target):

return self.transforms(img, target)

验证集的增强比较简单,只有随机Resize。

Main方法


对Main方法,我做了一些修改,修改的代码如下:

#定义模型,并加载预训练

model = fcn_resnet50(pretrained=True)

默认classes是21,如果不是21,则要修改类别。

if num_classes != 21:

model.classifier[4] = torch.nn.Conv2d(512, num_classes, kernel_size=(1, 1), stride=(1, 1))

model.aux_classifier[4] = torch.nn.Conv2d(256, num_classes, kernel_size=(1, 1), stride=(1, 1))

print(model)

model.to(device)

如果有多张显卡,则使用多张显卡

if torch.cuda.device_count() > 1:

print(“Let’s use”, torch.cuda.device_count(), “GPUs!”)

model = torch.nn.DataParallel(model)

模型,我改为pytorch官方的模型了,如果能使用官方的模型尽量使用官方的模型。

默认类别是21,如果不是21,则要修改类别。

检测系统中是否有多张卡,如果有多张卡则使用多张卡不能浪费资源。

如果不想使用所有的卡,而是指定其中的几张卡,可以使用:

os.environ[‘CUDA_VISIBLE_DEVICES’] = ‘0,1’

也可以在DataParallel方法中设定:

model = torch.nn.DataParallel(model,device_ids=[0,1])

如果使用了多显卡,再使用模型的参数就需要改为model.module.xxx,例如:

params = [p for p in model.module.aux_classifier.parameters() if p.requires_grad]

params_to_optimize.append({“params”: params, “lr”: args.lr * 10})

上面的都完成了就可以开始训练了,如下图:

image-20220303230535077测试

=====================================================================================================================================================================

在开始测试之前,我们还要获取到调色板,新建脚本get_palette.py,代码如下:

import json

import numpy as np

from PIL import Image

读取mask标签

target = Image.open(“./2007_001288.png”)

获取调色板

palette = target.getpalette()

palette = np.reshape(palette, (-1, 3)).tolist()

print(palette)

转换成字典子形式

pd = dict((i, color) for i, color in enumerate(palette))

json_str = json.dumps(pd)

with open(“palette.json”, “w”) as f:

f.write(json_str)

选取一张mask,然后使用getpalette方法获取,然后将其转为字典的格式保存。

接下来,开始预测部分,新建predict.py,插入以下代码:

import os

import time

import json

import torch

from torchvision import transforms

import numpy as np

from PIL import Image

from torchvision.models.segmentation import fcn_resnet50

导入程序需要的包文件,然在mian方法中:

def main():

aux = False # inference time not need aux_classifier

classes = 20

weights_path = “./save_weights/model_5.pth”

img_path = “./2007_000123.jpg”

palette_path = “./palette.json”

assert os.path.exists(weights_path), f"weights {weights_path} not found."

assert os.path.exists(img_path), f"image {img_path} not found."

assert os.path.exists(palette_path), f"palette {palette_path} not found."

with open(palette_path, “rb”) as f:

pallette_dict = json.load(f)

pallette = []

for v in pallette_dict.values():

pallette += v

  • 定义是否需要aux_classifier,预测不需要aux_classifier,所以设置为False。

  • 设置类别为20,不包括背景。

  • 定义权重的路径。

  • 定义调色板的路径。

  • 读去调色板。

接下来,是加载模型,单显卡训练出来的模型和多显卡训练出来的模型加载有区别,我们先看单显卡训练出来的模型如何加载。

model = fcn_resnet50(num_classes=classes+1)

print(model)

单显卡训练出来的模型,加载

delete weights about aux_classifier

weights_dict = torch.load(weights_path, map_location=‘cpu’)[‘model’]

for k in list(weights_dict.keys()):

if “aux_classifier” in k:

del weights_dict[k]

load weights

model.load_state_dict(weights_dict)

model.to(device)

定义模型fcn_resnet50,num_classes设置为类别+1(背景)

加载训练好的模型,并将aux_classifier删除。

然后加载权重。

再看多显卡的模型如何加载

create model

model = fcn_resnet50(num_classes=classes+1)

model = torch.nn.DataParallel(model)

delete weights about aux_classifier

weights_dict = torch.load(weights_path, map_location=‘cpu’)[‘model’]

print(weights_dict)

for k in list(weights_dict.keys()):

if “aux_classifier” in k:

del weights_dict[k]

load weights

model.load_state_dict(weights_dict)

model=model.module

model.to(device)

定义模型fcn_resnet50,num_classes设置为类别+1(背景),将模型放入DataParallel类中。

加载训练好的模型,并将aux_classifier删除。

加载权重。

执行torch.nn.DataParallel(model)时,model被放在了model.module,所以model.module才真正需要的模型。所以我们在这里将model.module赋值给model。

接下来是图像数据的处理

load image

original_img = Image.open(img_path)

from pil image to tensor and normalize

data_transform = transforms.Compose([transforms.Resize(520),

transforms.ToTensor(),

transforms.Normalize(mean=(0.485, 0.456, 0.406),

std=(0.229, 0.224, 0.225))])

img = data_transform(original_img)

expand batch dimension

img = torch.unsqueeze(img, dim=0)

加载图像。

对图像做Resize、标准化、归一化处理。

使用torch.unsqueeze增加一个维度。

完成图像的处理后,就可以开始预测了。

model.eval() # 进入验证模式

with torch.no_grad():

init model

img_height, img_width = img.shape[-2:]

init_img = torch.zeros((1, 3, img_height, img_width), device=device)

model(init_img)

t_start = time_synchronized()

output = model(img.to(device))

t_end = time_synchronized()

print(“inference+NMS time: {}”.format(t_end - t_start))

prediction = output[‘out’].argmax(1).squeeze(0)

prediction = prediction.to(“cpu”).numpy().astype(np.uint8)

np.set_printoptions(threshold=sys.maxsize)

print(prediction.shape)

mask = Image.fromarray(prediction)

mask.putpalette(pallette)

mask.save(“test_result.png”)

将预测后的结果保存到test_result.png中。查看运行结果:

原图:

image-20220304130747212

结果:

image-20220304130836125

打印出来的数据:

image-20220304132102310

类别列表:

{

“aeroplane”: 1,

“bicycle”: 2,

“bird”: 3,

“boat”: 4,

“bottle”: 5,

“bus”: 6,

“car”: 7,

“cat”: 8,

“chair”: 9,

“cow”: 10,

“diningtable”: 11,

“dog”: 12,

最后

Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

👉Python所有方向的学习路线👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

👉Python必备开发工具👈

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

👉Python全套学习视频👈

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

👉实战案例👈

学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。

因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。

👉大厂面试真题👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

  • 22
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值