Numpy:简介与数组

最后

🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

[0. 1. 2. 3. 4.] float16

[0 1 2 3 4 5] int8

‘’’

(3)数组创建好后修改数据类型:array.astype(数据类型)

a22 = a2.astype(int)

a33 = a3.astype(‘float16’)

print(a22.dtype,a33.dtype)

‘’’

int32 float16

‘’’

(4)Numpy中的bool类型

创建时指定bool类型,将一个列表中的数据转换成True或False

转换规则在与Python中相同: 0 / 空字符串’’ / None都为False,其他都为True

s1 = np.array([2,0,1,None,‘’,‘ssd’,True],dtype=bool)

print(s1,s1.dtype)

‘’’

[ True False True False False True True] bool

‘’’

(5)Numpy中的小数类型

numpy.round(array, n) 将array中的小数保留n位并返回数组

s2 = np.array([random.random() for i in range(5)])

创建数组时使用列表循环

print(s2,s2.dtype)

s3 = np.round(s2,3)

Numpy.round(array,n) 将array中保留n位小数,并返回数组

print(s3,s3.dtype)

‘’’

[0.49257971 0.35290744 0.35157731 0.02503256 0.06226811] float64

[0.493 0.353 0.352 0.025 0.062] float64

‘’’

数组的形状(数组的多维形式)

array.shape

返回该数组有几行几列,元组类型,层次以此类推

由于shape()返回元组类型,我们可以用shape[0]获取行数,shape[1]获取列数

一维数组

a1 = np.array([1,3,5,2])

print(a1.shape)

二维数组

a2 = np.array([

[11,12,13],

[21,22,23]

])

print(a2.shape)

print(‘a2共有%d个元素’ %(a2.shape[0]*a2.shape[1]) )

三维数组

a3 = np.array([

[

[111,112,113],

[121,122,123]

],

[

[211,212,213],

[221,222,223]

]

])

print(a3)

print(a3.shape)

print(‘a2共有%d个元素’ %(a3.shape[0]*a3.shape[1]) )

‘’’

(4,)

(2, 3)

a2共有6个元素

(2, 2, 3)

a2共有4个元素

‘’’

a4 = np.array(

[23],

[23,25]

)

每一行的列数必须相等,否则会报错:

print(a4.shape)

TypeError: Field elements must be 2- or 3-tuples, got ‘23’

array.reshape( (n,m,…) )

将数组转换成n行m列的多维数组,元素个数必须刚刚好,否则报错

返回转换后的数组,但不改变原数组

a5 = np.arange(6)

print(a5.reshape((2,3))) # 转换成2行3列的二维数组

print(a5.reshape(6)) # 转换回一维数组

a6 = np.arange(27)

print(a6.reshape((3,3,3)))

‘’’

[[0 1 2]

[3 4 5]]

[[[ 0 1 2]

[ 3 4 5]

[ 6 7 8]]

[[ 9 10 11]

[12 13 14]

[15 16 17]]

[[18 19 20]

[21 22 23]

[24 25 26]]]

‘’’

array.flatten()

将二维数组转换为一维数组

返回转换后的数组,但不改变原数组

a5 = np.array([ [1,2,3], [4,5,6]])print(a5.flatten())‘’‘[1 2 3 4 5 6]’‘’

数组的运算

对数组进行运算时会将运算过程作用于每一个元素(numpy的广播机制)

如果运算为除以零,会返回nan(0/0 Not A Number) 或者 inf(n/0 infinite)

在这里插入图片描述

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值