Tricky maggggicallll

统计一个包含所有点的最小子树长度*2

    a[k]=a[0];
    for(int i=0;i<k;i++)ans+=dis(a[i],a[i+1]);

子集dp

void sos(){
	for(int i=0;i<(1<<N);i++)
		f[i]=w[i];
	for(int i=0;i<N;i++)
		for(int st=0;st<(1<<N);st++)
			if(st&(1<<i)) f[st]+=f[st^(1<<i)];
}

容斥dfs版

dfs(int beg,set S,int sym)
{
     ans+=num(S)*sym;
     for(int i=beg;i<=n;i++)
         dfs(i,S∩A[i],sym*-1);
}
 
for(int i=1;i<=n;i++)
     dfs(i,A[i],1);

挺好的lucas板子

struct Lucas
{
    LL p;
    LL fa[MO],inv[MO];//阶乘和逆元,注意空间大小
    void init(LL _p)
    {
        p=_p;
        fa[0]=1;
        for(int i=1;i<p;i++)
        {
            fa[i]=fa[i-1]*i%p;
            //cout<<"i "<<i;
            inv[i]=qp(i,p-2,p);
            //cout<<"i "<<i;
        }
    }
    LL c(LL n,LL m)//小组合数取模
    {
        if(n==m||m==0)
            return 1;
        if(m>n)
            return 0;
        return fa[n]*inv[fa[n-m]*fa[m]%p]%p;
    }
    LL lucas(LL n,LL m)//大组合数取模
    {
        if(n==m||m==0)
            return 1;
        if(m>n)
            return 0;
        return c(n%p,m%p)*lucas(n/p,m/p)%p;
    }
}lu;
 

线段树二分得小于某数最前位置

int query(int now,int L,int R,int i,int j,int d)
{
    if(L==R)//达到端点,直接返回 
    {
        if(minv[now]<=d)
            return L;
        else
            return -1;
    }
    if(i<=L && R<=j)//对于已经包含了的情况,直接判断,也是吧*logn变成+logn的关键 
        if(minv[now]>d)
            return -1;
    int m=(L+R)>>1;
    if(j<=m)
        return query(lc[now],L,m,i,j,d);
    if(i>=m+1)
        return query(rc[now],m+1,R,i,j,d);//正常的筛出小区间 

    int t1=query(lc[now],L,m,i,j,d);//先左子树 
    if(t1!=-1)
        return t1;
    return query(rc[now],m+1,R,i,j,d);//左子树不行才弄右子树 
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值