【java数据结构】栈和队列

目录

什么是栈

java中的集合--->栈

 栈的使用

栈的底层实现

栈的应用之逆波兰表达式

栈的应用之括号匹配问题

队列

什么是队列?

数组实现队列

链表实现队列


什么是栈

 (stack)只允许在有序的线性数据集合的一端(称为栈顶 top)进行加入数据(push)和移除数据(pop)。因而按照 后进先出(LIFO, Last In First Out) 的原理运作。在栈中,push 和 pop 的操作都发生在栈顶。

栈这种数据结构是一种线性的数据结构,底层既可以由数组实现也可以利用链表来实现,栈有两种操作,都是对栈顶进行操作,分别是插入push()和删除pop()操作,所以是一种后进先出或者先进后出的一种数据结构,在生活中,经常就会有栈的存在,比如那在打开网页的时候,看见对你好奇感兴趣的东西你就会一直点开网页看(压栈的过程),但是当我们看完我们想要的内容,我们就依次的关闭网页(出栈的过程),而当我们又要打开以前的网页...关闭网页(都是一系列的压栈出栈过程循环往复)。

java中的集合--->栈

在java中,为了开发的方便,有了Stack接口,通过它我们就可以利用栈这种数据结构应用一些场景。

stack常用的方法

 栈的使用

我们一般使用栈也是要利用泛型。

public static void main(String[] args) {
    Stack<Integer> stack = new Stack<>();//栈的定义
    stack.push(1);//栈的插入
    stack.push(2);
    stack.push(3);
    stack.push(4);
    System.out.println(stack.pop());//栈的弹出
    System.out.println(stack.peek());//显示栈顶元素,不弹出
    System.out.println(stack.size());//栈的容量大小(栈中有几个元素)
    System.out.println(stack.empty());//判断栈是否为空
}

打印结果:

4
3
3
false

栈的底层实现

栈既可以利用数组实现,也可以利用双向链表实现,对其插入和弹出时间复杂度都是O(1),对于访问元素最坏情况下就是O(1).

这里采用数组实现

public class MyStack {

    public int[] elem;//利用数组实现栈
    public int usedSize;//有效个数

    public MyStack(){//构造方法-->用来初始化
        this.elem = new int[5];//初始化数组容量为5
        this.usedSize = 0 ;//最开始有效数据个数为0
    }

    public int size(){//有效个数大小就是当前栈的容量
         return this.usedSize;
    }

    public boolean empty(){//判断栈是否为空
         return this.usedSize==0;//当有效个数为0是代表栈为空
    }

    public int peek(){//有效数据个数相当于数组有效长度 -1就是数组最后一个元素也就是栈顶元素
         return this.elem[this.usedSize-1];
    }

    private boolean isFull(){//当有效数组长度等于数组默认长度时证明栈已经满了
        return this.elem.length == this.usedSize;
    }

    public int push(int key){//插入元素-->栈顶
         if(isFull()){//如果栈满了就需要扩容-->这里采用2倍扩容
            this.elem = Arrays.copyOf(this.elem,2*this.elem.length);
         }
         this.elem[usedSize++] = key;//将当前key插入到usedSize中,同时长度要+1
         return key;
    }

    public int pop(){//将栈顶元素弹出
         int ret = this.elem[this.usedSize-1];
         this.usedSize--;//有效长度-1
         return ret;//返回从栈顶弹出的元素
    }

}

栈的应用之逆波兰表达式

什么是逆波兰表达式呢??-->来源力扣150. 逆波兰表达式求值

逆波兰表达式:

逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。

平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 )
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * )
逆波兰表达式主要有以下两个优点:

去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中


也就是说我们平常写的对数的加法减法乘法除法,都是这样的..的例如: ( 1 + 2 ) * ( 3 + 4 )-->中缀表达式,而我们这样能让计算机读懂呢??->这就引入了今天的逆波兰表达式也就是后缀表达式,我们就让中缀表达式转成后缀表达式。

例如:1+2*3+(4*2+5)*6

  •  将所有运算都加上大括号
  • 将运算符移动到对应括号的外面
  • 去掉所有括号

好了我们就得到了一个后缀表达式-->也就是计算机能读懂的计算

那计算机是怎么通过这样的后缀表达式来计算出结果呢???

那就是我们这样神奇的数据结构-->

  • 遇到数字就加入到栈中
  • 遇到运算符就出两个数字
  • 第一次出的放在运算符右边,第二次出的放运算符左边
  • 计算完成之后继续放入栈中
  • 最终栈顶元素就是最终表达式计算的结果

代码实现:

class Solution {
    public int evalRPN(String[] tokens) {
        //思路:遇到数字就入栈,如果遇到数字符号就出两个数进行计算
        //计算结果继续入栈,一直遍历字符串结束
        Stack<Integer> stack = new Stack<>();
        for(int i =0;i<tokens.length;++i){
            String str = tokens[i];
            if(!isNumCharacter(str)){//判断是否是符号
               //如果是数字的话就将其入栈
               int num = Integer.parseInt(str);
               stack.push(num);
            }else{
                //如果是字符就弹栈,弹出两个数字
                int num2 = stack.pop();
                int num1 = stack.pop();
                switch(str){
                    case "+":
                         stack.push(num1+num2);
                         break;
                    case "-":
                         stack.push(num1-num2);
                         break;
                    case "*":
                         stack.push(num1*num2);
                         break;
                    case "/":
                         stack.push(num1/num2);
                         break;
                }
            }
        }
        return stack.peek();
    }
    //用来判断这个字符串是否是字符
    public boolean isNumCharacter(String s){
        if(s.equals("+")||s.equals("*")||
        s.equals("-")||s.equals("/")){
            return true;
        }
        return false;
    }
}

栈的应用之括号匹配问题

-->20. 有效的括号

这个也是栈的应用经典问题

输入:s = "( )"         输出:true        输入:s = "( )[ ]{ }"        输出:true
输入:s = "( ]"         输出:false        输入:s = "( [ ) ]"          输出:false
输入:s = "{ [ ] }"       输出:true

这个题就是一共有三种括号【】{} ()然后这三个可以混合也可以不混合,看是否是匹配的?

思路:

左括号都入栈,然后看遍历的字符是否与其匹配,如果匹配将栈顶左括号弹出继续遍历,如果最后栈中还有元素,或者还有没遍历完的字符串但栈已经为空都是不匹配的

class Solution {
    public boolean isValid(String s) {
       //如果是左括号就入栈
       Stack<Character> stack = new Stack<>();
       for(int i =0;i<s.length();++i){
            //如果是左括号就入栈
            if(s.charAt(i)=='('||s.charAt(i)=='['
            ||s.charAt(i)=='{'){
                stack.push(s.charAt(i));
            }else {
                //如果不是右括号那就要与栈顶元素进行比较
                if(stack.empty()){
                    //如果栈为空,无法比较
                    return false;
                }else {
                    //栈不为空看是否是匹配的情况
                    if((stack.peek()=='('&&s.charAt(i)==')')
                    ||(stack.peek()=='{'&&s.charAt(i)=='}')||
                    (stack.peek()=='['&&s.charAt(i)==']')){
                        stack.pop();
                    }else {
                        //如果相等弹出栈顶元素
                       return false;
                    }
                }
            }
       }
           return stack.empty();
    }
}

队列

什么是队列?

队列 是 先进先出( FIFO,First In, First Out) 的线性表。在具体应用中通常用链表或者数组来实现,用数组实现的队列叫作 顺序队列 ,用链表实现的队列叫作 链式队列 。队列只允许在后端(rear)进行插入操作也就是 入队 enqueue,在前端(front)进行删除操作也就是出队 dequeue


队列也是一种线性结构,与栈不同,栈是先进后出,而队列呢是先进先出,主要维护两个指针域,一个是front,一个是rear,当我们进行插入操作的时候也就是rear操作也就是入队 enqueue。当我们要删除元素时,删除对头元素也就是出队 dequeue。

队列既可以利用数组实现(叫做顺序队列,改进之后变成循环队列),也可以利用链表实现。

数组实现队列

  • 顺序队列

最开始我们只利用front作为对头元素front固定不动。

 但是这样的缺点是我们插入的时间复杂度是O(1),而删除是从对头元素删除,这样的时间复杂度是O(N)。

之后有发明了一种,那为啥对头固定不动呢???,然后设置了对头可以移动,不一定就是下标为0就是对头元素,任意下标都可以为对头元素,这样时间复杂度就都是O(1).

 但是这样又有缺点就是会出现假溢出的情况。

那什么是假溢出呢??就是原本数组没有满还可以继续插入元素,然因为对头front==队尾rear,此时就认为是满了,那怎么办呢???

最后有发明了一种循环数组,那既然前面还有空间,我们能不能让它卷起来呢,也就是rear在front前面,成了一个循环队列,这样就避免了上面的情况

 对于环形队列有以下几个问题

  • 走到下一步怎么走??难道是rear = rear+1么???front = front+1么??

 如果不是从7下标走到0下标,rear=rear+1没毛病,但是因为是循环队列,我们要让rear走到0下标位置,此时就不能怎这么走了,计算公式应该是 rear = (rear+1)%arr.length。

  • 怎么判断队列是空呢??

当front==rear相遇时我们证明它是空的队列。

  • 怎么判断队列是否为满呢? ?

这里有三种方式来判断队列是否为满。

  1. 利用计数器的方法,当计数=数组长度的时候,我们就证明它是满的。
  2. 利用标记的方法,刚开始rear和front相遇时我们设置标记flag=0,当rear和front再次相遇的时候我们将标记置为1,证明队列已经是满的。
  3. 还可以采用空一个空间,来进行判断是否为满,当(rear+1)%arr.length == front时候就认为是满的情况

我们这里采用第三种方法来判断队列是否为满

 代码实现:

class MyCircularQueue {

    private int[] elem;//利用数组实现队列
    private int front;//头指针
    private int rear;//尾指针

    public MyCircularQueue(int k) {//由于让k个空间全部放满元素,k+1用来空一个元素判断队列是否满??
        this.elem = new int[k+1];//初始化k+1个空间
    }
    
    public boolean enQueue(int value) {
        //如果满了就不能入队
        if(isFull()){
            return false;
        }
        this.elem[rear] = value;
        this.rear = (this.rear+1)%this.elem.length;//存放一个元素,向前走一步
        return true;
    }
    
    public boolean deQueue() {
        if(isEmpty()){//如果队列为空,不能删除元素
            return false;
        }
        this.front = (this.front+1)%this.elem.length;
        return true;
    }
    
    public int Front() {//获取队头元素
        if(isEmpty()){
            return -1;
        }
        return this.elem[front];
    }
    
    public int Rear() {//获取对尾元素
        if(isEmpty()){
            return -1;
        }
//这里特殊情况就是rear为0的情况为数组长度-1就是队尾元素,否则的话就是rear-1
        int index = this.rear==0?this.elem.length-1:rear-1;
        return this.elem[index];
    }
    
    public boolean isEmpty() {//当头指针和尾指针相遇的时候就代表队列为空
        return this.front == this.rear;
    }
    
    public boolean isFull() {//空一个判断是否为满
        return (this.rear+1)%this.elem.length == this.front;
    }
}

链表实现队列

 

Description:

利用链表实现一个队列--->利用单链表带两个索引一个front在前面 一个rear在后面 -->我们采用尾入头出这样时间复杂度都是O(1)

代码实现:

/**
 * Description:利用链表实现一个队列--->利用单链表带两个索引
 *一个front在前面 一个rear在后面 -->我们采用尾入头出这样时间复杂度都是O(1)
 */
public class MyQueue {

    static class Node{
        //创建一个单链表,有两个索引值
        private int val;//节点的值
        private Node next;//节点next指针指向下一个节点
        public Node(int val){
            this.val = val;
        }
    }
    private Node front;//队头-->头出队
    private Node rear;//队尾--->尾入队
    private int usedSize;
    /**
     * 入队
     * @param val-
     */
    public void offer(int val){
        if(front==null){
            Node node = new Node(val);
            front = node;
            rear = node;
            this.usedSize++;
        }else {
            Node node = new Node(val);
            //尾入队
            rear.next = node;
            rear = node;
            this.usedSize++;
        }
    }

    /**
     * 获取队列大小
     */
    public int size(){
         return this.usedSize;
    }

    /**
     * 出队-->对头出队相当于头删
     */
    public int poll(){
        if(isEmpty()){
            return -1;
        }
        int ret =0;
        if(front.next==null){
            //只剩下一个节点的时候
            ret = front.val;
            front=null;
            rear=null;
            this.usedSize--;
        }else {
            ret = front.val;
            front = front.next;
            this.usedSize--;
        }
        return ret;
    }

    /**
     * 判断队列是否为空
     */
    public boolean isEmpty(){
         return this.usedSize==0;
    }

    /**
     * 获取对头元素
     */
    public int peek(){
        if(isEmpty()){
            return -1;
        }
        return front.val;
    }

}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值