目录
栈
什么是栈
栈 (stack)只允许在有序的线性数据集合的一端(称为栈顶 top)进行加入数据(push)和移除数据(pop)。因而按照 后进先出(LIFO, Last In First Out) 的原理运作。在栈中,push 和 pop 的操作都发生在栈顶。
栈这种数据结构是一种线性的数据结构,底层既可以由数组实现也可以利用链表来实现,栈有两种操作,都是对栈顶进行操作,分别是插入push()和删除pop()操作,所以是一种后进先出或者先进后出的一种数据结构,在生活中,经常就会有栈的存在,比如那在打开网页的时候,看见对你好奇感兴趣的东西你就会一直点开网页看(压栈的过程),但是当我们看完我们想要的内容,我们就依次的关闭网页(出栈的过程),而当我们又要打开以前的网页...关闭网页(都是一系列的压栈出栈过程循环往复)。
java中的集合--->栈
在java中,为了开发的方便,有了Stack接口,通过它我们就可以利用栈这种数据结构应用一些场景。
stack常用的方法
栈的使用
我们一般使用栈也是要利用泛型。
public static void main(String[] args) {
Stack<Integer> stack = new Stack<>();//栈的定义
stack.push(1);//栈的插入
stack.push(2);
stack.push(3);
stack.push(4);
System.out.println(stack.pop());//栈的弹出
System.out.println(stack.peek());//显示栈顶元素,不弹出
System.out.println(stack.size());//栈的容量大小(栈中有几个元素)
System.out.println(stack.empty());//判断栈是否为空
}
打印结果:
4
3
3
false
栈的底层实现
栈既可以利用数组实现,也可以利用双向链表实现,对其插入和弹出时间复杂度都是O(1),对于访问元素最坏情况下就是O(1).
这里采用数组实现
public class MyStack {
public int[] elem;//利用数组实现栈
public int usedSize;//有效个数
public MyStack(){//构造方法-->用来初始化
this.elem = new int[5];//初始化数组容量为5
this.usedSize = 0 ;//最开始有效数据个数为0
}
public int size(){//有效个数大小就是当前栈的容量
return this.usedSize;
}
public boolean empty(){//判断栈是否为空
return this.usedSize==0;//当有效个数为0是代表栈为空
}
public int peek(){//有效数据个数相当于数组有效长度 -1就是数组最后一个元素也就是栈顶元素
return this.elem[this.usedSize-1];
}
private boolean isFull(){//当有效数组长度等于数组默认长度时证明栈已经满了
return this.elem.length == this.usedSize;
}
public int push(int key){//插入元素-->栈顶
if(isFull()){//如果栈满了就需要扩容-->这里采用2倍扩容
this.elem = Arrays.copyOf(this.elem,2*this.elem.length);
}
this.elem[usedSize++] = key;//将当前key插入到usedSize中,同时长度要+1
return key;
}
public int pop(){//将栈顶元素弹出
int ret = this.elem[this.usedSize-1];
this.usedSize--;//有效长度-1
return ret;//返回从栈顶弹出的元素
}
}
栈的应用之逆波兰表达式
什么是逆波兰表达式呢??-->来源力扣150. 逆波兰表达式求值
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
逆波兰表达式主要有以下两个优点:
去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中
也就是说我们平常写的对数的加法减法乘法除法,都是这样的..的例如: ( 1 + 2 ) * ( 3 + 4 )-->中缀表达式,而我们这样能让计算机读懂呢??->这就引入了今天的逆波兰表达式也就是后缀表达式,我们就让中缀表达式转成后缀表达式。
例如:1+2*3+(4*2+5)*6
- 将所有运算都加上大括号
- 将运算符移动到对应括号的外面
- 去掉所有括号
好了我们就得到了一个后缀表达式-->也就是计算机能读懂的计算
那计算机是怎么通过这样的后缀表达式来计算出结果呢???
那就是我们这样神奇的数据结构-->栈
- 遇到数字就加入到栈中
- 遇到运算符就出两个数字
- 第一次出的放在运算符右边,第二次出的放运算符左边
- 计算完成之后继续放入栈中
- 最终栈顶元素就是最终表达式计算的结果
代码实现:
class Solution {
public int evalRPN(String[] tokens) {
//思路:遇到数字就入栈,如果遇到数字符号就出两个数进行计算
//计算结果继续入栈,一直遍历字符串结束
Stack<Integer> stack = new Stack<>();
for(int i =0;i<tokens.length;++i){
String str = tokens[i];
if(!isNumCharacter(str)){//判断是否是符号
//如果是数字的话就将其入栈
int num = Integer.parseInt(str);
stack.push(num);
}else{
//如果是字符就弹栈,弹出两个数字
int num2 = stack.pop();
int num1 = stack.pop();
switch(str){
case "+":
stack.push(num1+num2);
break;
case "-":
stack.push(num1-num2);
break;
case "*":
stack.push(num1*num2);
break;
case "/":
stack.push(num1/num2);
break;
}
}
}
return stack.peek();
}
//用来判断这个字符串是否是字符
public boolean isNumCharacter(String s){
if(s.equals("+")||s.equals("*")||
s.equals("-")||s.equals("/")){
return true;
}
return false;
}
}
栈的应用之括号匹配问题
-->20. 有效的括号
这个也是栈的应用经典问题
输入:s = "( )" 输出:true 输入:s = "( )[ ]{ }" 输出:true
输入:s = "( ]" 输出:false 输入:s = "( [ ) ]" 输出:false
输入:s = "{ [ ] }" 输出:true
这个题就是一共有三种括号【】{} ()然后这三个可以混合也可以不混合,看是否是匹配的?
思路:
左括号都入栈,然后看遍历的字符是否与其匹配,如果匹配将栈顶左括号弹出继续遍历,如果最后栈中还有元素,或者还有没遍历完的字符串但栈已经为空都是不匹配的
class Solution {
public boolean isValid(String s) {
//如果是左括号就入栈
Stack<Character> stack = new Stack<>();
for(int i =0;i<s.length();++i){
//如果是左括号就入栈
if(s.charAt(i)=='('||s.charAt(i)=='['
||s.charAt(i)=='{'){
stack.push(s.charAt(i));
}else {
//如果不是右括号那就要与栈顶元素进行比较
if(stack.empty()){
//如果栈为空,无法比较
return false;
}else {
//栈不为空看是否是匹配的情况
if((stack.peek()=='('&&s.charAt(i)==')')
||(stack.peek()=='{'&&s.charAt(i)=='}')||
(stack.peek()=='['&&s.charAt(i)==']')){
stack.pop();
}else {
//如果相等弹出栈顶元素
return false;
}
}
}
}
return stack.empty();
}
}
队列
什么是队列?
队列 是 先进先出( FIFO,First In, First Out) 的线性表。在具体应用中通常用链表或者数组来实现,用数组实现的队列叫作 顺序队列 ,用链表实现的队列叫作 链式队列 。队列只允许在后端(rear)进行插入操作也就是 入队 enqueue,在前端(front)进行删除操作也就是出队 dequeue
队列也是一种线性结构,与栈不同,栈是先进后出,而队列呢是先进先出,主要维护两个指针域,一个是front,一个是rear,当我们进行插入操作的时候也就是rear操作也就是入队 enqueue。当我们要删除元素时,删除对头元素也就是出队 dequeue。
队列既可以利用数组实现(叫做顺序队列,改进之后变成循环队列),也可以利用链表实现。
数组实现队列
- 顺序队列
最开始我们只利用front作为对头元素front固定不动。
但是这样的缺点是我们插入的时间复杂度是O(1),而删除是从对头元素删除,这样的时间复杂度是O(N)。
之后有发明了一种,那为啥对头固定不动呢???,然后设置了对头可以移动,不一定就是下标为0就是对头元素,任意下标都可以为对头元素,这样时间复杂度就都是O(1).
但是这样又有缺点就是会出现假溢出的情况。
那什么是假溢出呢??就是原本数组没有满还可以继续插入元素,然因为对头front==队尾rear,此时就认为是满了,那怎么办呢???
最后有发明了一种循环数组,那既然前面还有空间,我们能不能让它卷起来呢,也就是rear在front前面,成了一个循环队列,这样就避免了上面的情况
对于环形队列有以下几个问题
- 走到下一步怎么走??难道是rear = rear+1么???front = front+1么??
如果不是从7下标走到0下标,rear=rear+1没毛病,但是因为是循环队列,我们要让rear走到0下标位置,此时就不能怎这么走了,计算公式应该是 rear = (rear+1)%arr.length。
- 怎么判断队列是空呢??
当front==rear相遇时我们证明它是空的队列。
- 怎么判断队列是否为满呢? ?
这里有三种方式来判断队列是否为满。
- 利用计数器的方法,当计数=数组长度的时候,我们就证明它是满的。
- 利用标记的方法,刚开始rear和front相遇时我们设置标记flag=0,当rear和front再次相遇的时候我们将标记置为1,证明队列已经是满的。
- 还可以采用空一个空间,来进行判断是否为满,当(rear+1)%arr.length == front时候就认为是满的情况
我们这里采用第三种方法来判断队列是否为满
代码实现:
class MyCircularQueue {
private int[] elem;//利用数组实现队列
private int front;//头指针
private int rear;//尾指针
public MyCircularQueue(int k) {//由于让k个空间全部放满元素,k+1用来空一个元素判断队列是否满??
this.elem = new int[k+1];//初始化k+1个空间
}
public boolean enQueue(int value) {
//如果满了就不能入队
if(isFull()){
return false;
}
this.elem[rear] = value;
this.rear = (this.rear+1)%this.elem.length;//存放一个元素,向前走一步
return true;
}
public boolean deQueue() {
if(isEmpty()){//如果队列为空,不能删除元素
return false;
}
this.front = (this.front+1)%this.elem.length;
return true;
}
public int Front() {//获取队头元素
if(isEmpty()){
return -1;
}
return this.elem[front];
}
public int Rear() {//获取对尾元素
if(isEmpty()){
return -1;
}
//这里特殊情况就是rear为0的情况为数组长度-1就是队尾元素,否则的话就是rear-1
int index = this.rear==0?this.elem.length-1:rear-1;
return this.elem[index];
}
public boolean isEmpty() {//当头指针和尾指针相遇的时候就代表队列为空
return this.front == this.rear;
}
public boolean isFull() {//空一个判断是否为满
return (this.rear+1)%this.elem.length == this.front;
}
}
链表实现队列
Description:
利用链表实现一个队列--->利用单链表带两个索引一个front在前面 一个rear在后面 -->我们采用尾入头出这样时间复杂度都是O(1)
代码实现:
/**
* Description:利用链表实现一个队列--->利用单链表带两个索引
*一个front在前面 一个rear在后面 -->我们采用尾入头出这样时间复杂度都是O(1)
*/
public class MyQueue {
static class Node{
//创建一个单链表,有两个索引值
private int val;//节点的值
private Node next;//节点next指针指向下一个节点
public Node(int val){
this.val = val;
}
}
private Node front;//队头-->头出队
private Node rear;//队尾--->尾入队
private int usedSize;
/**
* 入队
* @param val-
*/
public void offer(int val){
if(front==null){
Node node = new Node(val);
front = node;
rear = node;
this.usedSize++;
}else {
Node node = new Node(val);
//尾入队
rear.next = node;
rear = node;
this.usedSize++;
}
}
/**
* 获取队列大小
*/
public int size(){
return this.usedSize;
}
/**
* 出队-->对头出队相当于头删
*/
public int poll(){
if(isEmpty()){
return -1;
}
int ret =0;
if(front.next==null){
//只剩下一个节点的时候
ret = front.val;
front=null;
rear=null;
this.usedSize--;
}else {
ret = front.val;
front = front.next;
this.usedSize--;
}
return ret;
}
/**
* 判断队列是否为空
*/
public boolean isEmpty(){
return this.usedSize==0;
}
/**
* 获取对头元素
*/
public int peek(){
if(isEmpty()){
return -1;
}
return front.val;
}
}