小染心得【01背包问题】
题目描述
辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?
输入格式
第一行有 22 个整数 TT(1 \le T \le 10001≤T≤1000)和 MM(1 \le M \le 1001≤M≤100),用一个空格隔开,TT 代表总共能够用来采药的时间,MM 代表山洞里的草药的数目。
接下来的 MM 行每行包括两个在 11 到 100100 之间(包括 11 和 100100)的整数,分别表示采摘某株草药的时间和这株草药的价值。
输出格式
输出在规定的时间内可以采到的草药的最大总价值。
70 3
71 100
69 1
1 2
输入输出样例
3
#include<bits/stdc++.h>
using namespace std ;
int wight[1000];
int price[1000];
int dfs[1000];
int main()
{ int packs,yaos,i,j,k;
cin>>packs>>yaos;
//扫描
for(i=1;i<=yaos;i++)
{
cin>>wight[i]>>price[i];
}
//
for(i=1;i<=yaos;i++)
{ for(j=packs;j>=1;j--)
{
if(j>=wight[i]){dfs[j]=max(dfs[j],dfs[j-wight[i]]+price[i]);}
//一维状态转移方程
}
//for(k=0;k<=packs;k++)可删去用于打表
//{
//cout<<dfs[k]<<' ';
//}
//cout<<'\n';
}
///
//10 4 [输入]
//2 1
//3 3
//4 5
//7 9
//0 0 1 1 1 1 1 1 1 1 1 【表】
//0 0 1 3 3 4 4 4 4 4 4
//0 0 1 3 5 5 6 8 8 9 9
//0 0 1 3 5 5 6 9 9 10 12【表】
//12【输出】
cout<<dfs[packs];
}
智乃来到水果摊前买瓜,水果摊上贩卖着N{N}N个不同的西瓜,第i{i}i个西瓜的重量为wiw_iwi。智乃对于每个瓜都可以选择买一个整瓜或者把瓜劈开买半个瓜,半个瓜的重量为wi2\frac{w_i}{2}2wi。
也就是说对于每个西瓜,智乃都有三种不同的决策:
- 购买一整个重量为wiw_iwi的西瓜
- 把瓜劈开,购买半个重量为wi2\frac{w_i}{2}2wi的西瓜
- 不进行购买操作
为了简化题目,我们保证所有瓜的重量都是一个正偶数。
现在智乃想要知道,如果他想要购买西瓜的重量和分别为k=1,2,3...M{k=1,2,3...M}k=1,2,3...M时,有多少种购买西瓜的方案,因为这些数字可能会很大,请输出方案数对109+7{10^9+7}109+7取余数后的结果。
输入描述:
第一行输入两个整数N,M(0≤N≤103,1≤M≤103){N,M(0 \leq N \leq10^3,1\leq M\leq 10^3)}N,M(0≤N≤103,1≤M≤103),分别表示西瓜的数目N{N}N,以及查询的重量上限为M{M}M。
若N{N}N不为0{0}0,接下来一行N{N}N个正偶数wi(2≤wi≤2×103)w_i (2 \leq w_i \leq2\times 10^3)wi(2≤wi≤2×103)表示每个西瓜的重量。
输出描述:
输出一行M{M}M个数字,分别表示购买西瓜的重量和为k=1,2,3...M{k=1,2,3...M}k=1,2,3...M时,有多少种购买西瓜的方案,因为这些数字可能会很大,请输出方案数对109+7{10^9+7}109+7取余数后的结果。
输入
复制3 6 8 2 4
3 6 8 2 4
输出
复制1 2 1 3 2 3
1 2 1 3 2 3
说明
购买重量和为1{1}1的西瓜共1{1}1种方案:
①、2{2}2号西瓜劈开买半个。
购买重量和为2{2}2的西瓜共2{2}2种方案:
①、直接购买2{2}2号西瓜。
②、3{3}3号西瓜劈开买半个。
购买重量和为3{3}3的西瓜共1{1}1种方案:
①、2{2}2号西瓜劈开买半个再加上3{3}3号西瓜劈开买半个。
购买重量和为4{4}4的西瓜共3{3}3种方案:
①、1{1}1号西瓜劈开买半个。
②、直接购买2{2}2号西瓜,再加上3{3}3号西瓜劈开买半个。
③、直接购买3{3}3号西瓜。
购买重量和为5{5}5的西瓜共2{2}2种方案:
①、2{2}2号西瓜劈开买半个再加上直接购买3{3}3号西瓜。
②、2{2}2号西瓜劈开买半个再加上1{1}1号西瓜劈开买半个。
购买重量和为6{6}6的西瓜共3{3}3种方案:
①、直接购买2{2}2号西瓜,再加上直接购买3{3}3号西瓜。
②、1{1}1号西瓜劈开买半个,再加上直接购买2{2}2号西瓜。
③、1{1}1号西瓜劈开买半个,再加上3{3}3号西瓜劈开买半个。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a[1010];
ll dp[1010][1010];
ll n,sum;
const ll mod=1e9+7;
int main()
{
cin>>n>>sum;
memset(dp,0,sizeof(dp));
for(ll i=1;i<=n;i++){cin>>a[i];dp[0][i]=1;}
dp[0][0]=1;
for(ll i=1;i<=sum;i++){
for(ll j=1;j<=n;j++){
dp[i][j]=dp[i][j-1];
if(i>=a[j])dp[i][j]=(dp[i][j]+dp[i-a[j]][j-1])%mod;
if(i>=a[j]/2)dp[i][j]=(dp[i][j]+dp[i-a[j]/2][j-1])%mod;
}
}
for(ll i=1;i<=sum;i++){
for(ll j=1;j<=n;j++){
printf("%d ",dp[i][j]%mod);
}printf("\n");
}
}
/*
3 6
0 0 0 0
0 8 2 4
0 0 1 1
0 0 1 2
0 0 0 1
0 1 1 3
0 0 1 2
0 0 1 3
*/