洛谷P1048 [NOIP2005 普及组] 采药

本文介绍了如何使用动态规划解决两道经典问题:01背包问题和西瓜购买策略。在01背包问题中,给定每株草药的采摘时间和价值,求最大总价值;在西瓜购买策略中,考虑购买不同重量西瓜的组合,以达到特定重量和。通过动态规划状态转移方程,分别得出最优解,并给出了示例代码和输出解析。
摘要由CSDN通过智能技术生成

小染心得【01背包问题】

题目描述

辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”

如果你是辰辰,你能完成这个任务吗?

输入格式

第一行有 22 个整数 TT(1 \le T \le 10001≤T≤1000)和 MM(1 \le M \le 1001≤M≤100),用一个空格隔开,TT 代表总共能够用来采药的时间,MM 代表山洞里的草药的数目。

接下来的 MM 行每行包括两个在 11 到 100100 之间(包括 11 和 100100)的整数,分别表示采摘某株草药的时间和这株草药的价值。

输出格式

输出在规定的时间内可以采到的草药的最大总价值。

70 3
71 100
69 1
1 2

输入输出样例

3
#include<bits/stdc++.h>
using namespace std ;

int wight[1000];
int price[1000];
int dfs[1000];

int main()
{  int packs,yaos,i,j,k;
   cin>>packs>>yaos;
//扫描 
  for(i=1;i<=yaos;i++)
   {
     cin>>wight[i]>>price[i]; 	
   }
//
  for(i=1;i<=yaos;i++)
  {  for(j=packs;j>=1;j--)
    {
    	if(j>=wight[i]){dfs[j]=max(dfs[j],dfs[j-wight[i]]+price[i]);}
    	//一维状态转移方程
   	}
   	
   	   //for(k=0;k<=packs;k++)可删去用于打表 
		  //{
		  	//cout<<dfs[k]<<' ';
		  //}
  	//cout<<'\n';
  	
  }
///

//10 4 [输入]
//2 1
//3 3
//4 5
//7 9
//0 0 1 1 1 1 1 1 1 1 1 【表】 
//0 0 1 3 3 4 4 4 4 4 4
//0 0 1 3 5 5 6 8 8 9 9
//0 0 1 3 5 5 6 9 9 10 12【表】 
//12【输出】 

  
cout<<dfs[packs];

    
}


 

智乃来到水果摊前买瓜,水果摊上贩卖着N{N}N个不同的西瓜,第i{i}i个西瓜的重量为wiw_iwi​。智乃对于每个瓜都可以选择买一个整瓜或者把瓜劈开买半个瓜,半个瓜的重量为wi2\frac{w_i}{2}2wi​​。

也就是说对于每个西瓜,智乃都有三种不同的决策:

  1. 购买一整个重量为wiw_iwi​的西瓜
  2. 把瓜劈开,购买半个重量为wi2\frac{w_i}{2}2wi​​的西瓜
  3. 不进行购买操作

为了简化题目,我们保证所有瓜的重量都是一个正偶数。

现在智乃想要知道,如果他想要购买西瓜的重量和分别为k=1,2,3...M{k=1,2,3...M}k=1,2,3...M时,有多少种购买西瓜的方案,因为这些数字可能会很大,请输出方案数对109+7{10^9+7}109+7取余数后的结果。

输入描述:

 

第一行输入两个整数N,M(0≤N≤103,1≤M≤103){N,M(0 \leq N \leq10^3,1\leq M\leq 10^3)}N,M(0≤N≤103,1≤M≤103),分别表示西瓜的数目N{N}N,以及查询的重量上限为M{M}M。

若N{N}N不为0{0}0,接下来一行N{N}N个正偶数wi(2≤wi≤2×103)w_i (2 \leq w_i \leq2\times 10^3)wi​(2≤wi​≤2×103)表示每个西瓜的重量。

输出描述:

输出一行M{M}M个数字,分别表示购买西瓜的重量和为k=1,2,3...M{k=1,2,3...M}k=1,2,3...M时,有多少种购买西瓜的方案,因为这些数字可能会很大,请输出方案数对109+7{10^9+7}109+7取余数后的结果。

输入

复制3 6 8 2 4

3 6
8 2 4

输出

复制1 2 1 3 2 3

1 2 1 3 2 3

说明

 

购买重量和为1{1}1的西瓜共1{1}1种方案:

①、2{2}2号西瓜劈开买半个。

购买重量和为2{2}2的西瓜共2{2}2种方案:

①、直接购买2{2}2号西瓜。

②、3{3}3号西瓜劈开买半个。

购买重量和为3{3}3的西瓜共1{1}1种方案:

①、2{2}2号西瓜劈开买半个再加上3{3}3号西瓜劈开买半个。

购买重量和为4{4}4的西瓜共3{3}3种方案:

①、1{1}1号西瓜劈开买半个。

②、直接购买2{2}2号西瓜,再加上3{3}3号西瓜劈开买半个。

③、直接购买3{3}3号西瓜。

购买重量和为5{5}5的西瓜共2{2}2种方案:

①、2{2}2号西瓜劈开买半个再加上直接购买3{3}3号西瓜。

②、2{2}2号西瓜劈开买半个再加上1{1}1号西瓜劈开买半个。

购买重量和为6{6}6的西瓜共3{3}3种方案:

①、直接购买2{2}2号西瓜,再加上直接购买3{3}3号西瓜。

②、1{1}1号西瓜劈开买半个,再加上直接购买2{2}2号西瓜。

③、1{1}1号西瓜劈开买半个,再加上3{3}3号西瓜劈开买半个。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a[1010];
ll dp[1010][1010];
ll n,sum;
const ll mod=1e9+7;
int main()
{
	cin>>n>>sum;
	memset(dp,0,sizeof(dp));
	for(ll i=1;i<=n;i++){cin>>a[i];dp[0][i]=1;}
	
	dp[0][0]=1;
	
	for(ll i=1;i<=sum;i++){
	for(ll j=1;j<=n;j++){
		dp[i][j]=dp[i][j-1];
		
		if(i>=a[j])dp[i][j]=(dp[i][j]+dp[i-a[j]][j-1])%mod;
		
		if(i>=a[j]/2)dp[i][j]=(dp[i][j]+dp[i-a[j]/2][j-1])%mod;
		}
	}
	
	for(ll i=1;i<=sum;i++){
	for(ll j=1;j<=n;j++){
	
		printf("%d ",dp[i][j]%mod);
			
	  }printf("\n");
	}
	
}
/*	
3 6
0 0 0 0
0 8 2 4
0 0 1 1
0 0 1 2
0 0 0 1
0 1 1 3
0 0 1 2
0 0 1 3
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.染

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值