前段时间遇到了一项测试任务,需要测试图表中数据的正确性,当时的测试环境数据库里的数据量比较大,估计上百条,如果全部统计现有的数据,就要通过数据库中的好几个表格找到几个区域对应字段的时间值。其实这并不算难,但其中有些订单我粗略一看,可能还牵涉到了一些我不能确定的业务逻辑,可能会对数据的展示有影响。那么这个时候的主要问题就是如何竟可能筛选出与展示页面匹配的数据了。
一开始测试时,我尝试着按部就班通过SQL语句筛选符合条件的数据,以减少验证的订单数,搞着搞着,还是觉得数据量有点多,操作起来费时费力,特别是有个订单像是开发进行单元测试时造出来的,我并不能确定它算不算统计的数据里。
于是继续筛选……到最后,豁然开朗,我把所有订单数据都删了,待测试图表数据所依赖的根本东西都没了,那肯定是全部归零了。果然,接下来只要按照图表显示各区域代表的逻辑,重新打开数据(或者造新数据)一个个验证就是了,不仅直接,而且省力,测试相关内容很快就完成了。
这便是一种“以小见大”、“化整为零”的思想吧:从需求最基本的逻辑处考虑,先忽略外在表现的东西(大的数据量、web端数据展示等),只要是形成基本逻辑的条件满足,就可以开始测试,而由此所选择的小数据量便会给工作量大大减负。
其实说起来这是很浅显、简单的东西,但在某些特定时刻,人总是容易陷入思维惯性,又或者忽略掉事物更本质的特点规律。这里我突然想到了以前的老班长和我们聊天时的场景:他问我们“决定行动的是什么?”
“是思想”。