m0_61346642
码龄4年
求更新 关注
提问 私信
  • 博客:9,876
    动态:68
    9,944
    总访问量
  • 22
    原创
  • 160
    粉丝
  • 11
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
加入CSDN时间: 2021-08-29
博客简介:

m0_61346642的博客

查看详细资料
个人成就
  • 获得169次点赞
  • 内容获得6次评论
  • 获得158次收藏
  • 代码片获得437次分享
  • 博客总排名134,589名
  • 原力等级
    原力等级
    3
    原力分
    203
    本月获得
    0
创作历程
  • 22篇
    2024年
成就勋章
TA的专栏
  • debug
    1篇
  • DCTNet
    7篇
  • 深度学习学习
    1篇
  • python学习
    5篇
  • 李哥24考研复试项目-深度学习
    6篇

TA关注的专栏 3

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

创作活动更多

『技术文档』写作方法征文挑战赛

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结于文档结构与内容的完美融合?无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

50人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

_tkinter.TclError: Can‘t find a usable init.tcl in the following directories:

在我想要在程序运行过程中查看图像时,我遇到了这个bug,这个报错似乎是说没有找到这个.tcl文件,但是我查看了出问题的目录,下面有这个文件,困扰了我很久,受。由于从报错内容来看 系统是从下面的lib里找的,所以就要把dct下面的tcl里的tcl8.6和tk8.6复制到lib里 就可以运行了。这里说缺少init.tcl文件,实际上就是缺少tcl2.6文件夹。
原创
发布博客 2024.11.13 ·
902 阅读 ·
9 点赞 ·
1 评论 ·
7 收藏

2024.11.3 DCTNet.py

再重新认识一下自适应最大池化adaptivemaxpool2d和最大池化maxpool2d,前者是自适应的,参数可以是一个数字也可以是一个元组(H,W),一个数字表示池化后的大小HW相等,后者的参数相当于每多少个选一个最大的值,比如参数是3,意思就是池化核的大小为3x3,步长也是3。Nonlocal模块,用于捕捉图像中的远程依赖关系,输入主特征图和辅助特征图,输出的是增强后的两个特征图,分别对应主辅特征图,该方法能让网络更加理解物体的整体外观,具有更强的语义特征。来源:dctnet-dctnet.py。
原创
发布博客 2024.11.12 ·
285 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

2024.11.4 resnet_aspp.py

根据不同的os值来设置rates列表的值(这里存疑 我不知道为什么这样设置),然后选择不同的backbone,如果是resnet50或101,则把aspp的输入尺寸改为2048,这是因为50和101是用的bottleneck,而18和34用的是basicblock,二者对输入尺寸的要求不一样,然后定义一个aspp模块,定义一个组合的卷积层。前向过程:input通过网络,得到各层的结果 在经过aspp和最后的卷积层,再恢复到原分辨率,实际上,经过最后的卷积的这个没用上。输入的图像尺寸为512。
原创
发布博客 2024.11.12 ·
144 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

2024.11.6 dataset.py

根据每一行的性质,将rgb图像 真值 of 深度图的路径读出来,注意如果是那个数据集 因为他的结构不一样 要做特殊处理,将data这个包含了一个图像所有对应关系的字典加入列表,等于说datas_id这个列表里每个元素都是一个字典,这个字典代表一段视频的rgb 真值 of 深度图与其路径的对应关系。随机切割函数 用border定义随机裁剪的窗口大小,label本来是一个array数组,用函数转变为image对象,求出四个角的坐标,再进行裁剪,注意还要将label再变成array。亮度归一化 获取图像尺寸。
原创
发布博客 2024.11.06 ·
178 阅读 ·
6 点赞 ·
0 评论 ·
3 收藏

2024 11.5 Spatial.py

虽然这个是rgb的网络,但是和其他两个一样bkb是resnet_aspp,平均池化 激活函数。注意上一步只是用来在pretrain中进行loss计算的 和dctnet中的不一样。定义不同层的卷积层 对应不同的输入通道数 输出的通道数都为64 可以理解为压缩。将img通过backbone,得到不同层的输出,再经过squeeze卷积。再通过双线性插值将不同层的特征图逐个融合,最后得到不同层的输出图。定义不同层的decoder 输出通道数都为128。定义outblock,将64通道压缩成一个通道。
原创
发布博客 2024.11.05 ·
166 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

20224.11.5 pretrain_depth

先定义 打印参数个数 构建Depth网络,从指定路径加载预训练模型。trainloader之前和train里的一样。预训练个深度图的网络。
原创
发布博客 2024.11.05 ·
201 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

2024.11.5 train.py

然后给参数分组,调出网络所以参数,name是参数名 param是张量,若一个参数是backbone的参数,就分到base里,backbone是指主干部分,一般是特征提取层,比如resnet vgg,这些已经预训练好的,不需要太大学习率 而分支部分需要高学习率 让他快速学到任务。用优化器访问param_groups,这个东西返回一个字典列表,和上面的用一个列表参数定义一个优化器相对应,并设置不同的学习率。数据处理:随机翻转,随机裁剪,图像标准化(数据来自ImageNet) 转换为张量形式。
原创
发布博客 2024.11.05 ·
183 阅读 ·
7 点赞 ·
0 评论 ·
2 收藏

2024.11.4 resnet.py

加载权重: pretrain_dict加载预训练模型的参数,初始化一个空字典,state_dict返回一个当前模型的权重字典,遍历预训练的权重字典,pretrain_items()返回字典索引和值,权重字典里索引即参数名称,查看预训练的参数在不在当前模型里,若在,将对应的键和值加入空字典中,最后使用update更新当前权重字典,最后加载到模型中。本代码中还有一个可选的降采样器,expansion=1表示这个块不会扩展输出通道数,与下面的bottleneck相比,输出通道数不变。
原创
发布博客 2024.11.04 ·
207 阅读 ·
4 点赞 ·
0 评论 ·
1 收藏

2024.11.3 ASPP模块

最重要的是dilation参数,这个模块接收输入通道输出通道和倍率rate作为参数,实际上rate为1时(即dilation也为1)为普通卷积,所以在rate=1时卷积核大小为1,相当于1x1卷积,其他时间卷积核大小为3,且进行padding,这个padding可以保证卷积之后的特征图大小不变。然后定义了一个空洞卷积层,然后进行权重初始化,这里显式调用了权重初始化,保证不会出现初始权重不当导致无法训练的情况。这里是用的是kaiming 初始化。
原创
发布博客 2024.11.03 ·
581 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

2024.10.31

上面的代码中我读图片的时候没有规定数据格式为uint8,下面的额代码中读图片时就规定了unit8格式,我困惑为什么两个都是uint8,上面的会报错 但是下面的不会,后来我怀疑是数据增强的问题,食物分类代码中使用了数据增强。这个bug意思是说,我输入到神经网络里的输入是char(int),和神经网络的参数float的类型不一样,这是我的代码。今天写minist训练代码和重新看食物分类代码的时候,又碰见了几个没有见过的bug,记录下来。这个函数会自动把数据格式设置为float32,让他和网络中的参数格式相同。
原创
发布博客 2024.11.01 ·
205 阅读 ·
3 点赞 ·
1 评论 ·
5 收藏

2024.5.22 类 对象

封装:类的私有属性和私有方法 调用私有方法和打印私有属性都会报错,给私有属性赋值不会报错但无效,但是可以被类内的方法使用,使用时用self.__...。私有属性和方法要在前面加上__在构建类对象时自动执行,将传入的参数自动传递给__init()__方法使用。python类可以使用__init__()方法,即构造方法。构造方法是python类的内置方法,其他内置方法还有。面对对象编程三大主要特征:封装 继承 多态。
原创
发布博客 2024.05.23 ·
219 阅读 ·
2 点赞 ·
1 评论 ·
0 收藏

2024.5.20 数据可视化

json数据格式:json是一种轻量级的数据交互格式,可以按照json指定的格式去组织和封装数据,json本质上是一个带有特定格式的字符串。json是一种在各个编程语言中流通的数据格式,负责不同编程语言中的数据传递和交互 中转数据格式。是谁520还要学python?json的格式:字典 或 字典的列表。pyecharts模块。
原创
发布博客 2024.05.22 ·
163 阅读 ·
3 点赞 ·
1 评论 ·
0 收藏

2024.5.19 python中的异常、模块、包

_init__.py文件为空文件,可以在该文件中定义__all__列表变量,来控制import * 导入的模块。python包:python文件夹,里面有很多模块组合在一起,和一个__init__.py文件,为自动创建。还可以:from 包名 import 模块名 使用时: 模块名.函数名。导入包:import 包名.模块名 使用时:包名.模块名.函数名。python模块:工具包 以.py结尾,是一个python文件。若多个自定义模块有同名,则后面的覆盖。异常的传递性:bug信息层层传递。
原创
发布博客 2024.05.19 ·
214 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

2024.5.19文件

文件编码为二进制文件,编码技术:UTF-8 GBK Big5等编码,不同的编码,翻译的内容不一样。文件的追加 :a模式 其他同写文件。
原创
发布博客 2024.05.19 ·
131 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

2024.5.19第二阶段

lambda 传入参数:返回结果 lambda函数作为临时定义的函数,只能使用一次。2、按键值对传参 参数之间的位置不固定,若未指定形参的实参必须按照位置来。lambda匿名函数 区别于def,def定义的函数可以重复使用。函数返回多个返回值,接收多个返回值。3、缺省参数 设置参数默认值。1、按形参位置传入参数。函数作为参数传入函数。
原创
发布博客 2024.05.19 ·
201 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

数据容器学习

tuple()转元组 str()转字符串 列表 元组转字符串时会在括号外加上双引号 字典也会保留value值 set()转集合 会去重。以上数据类型通用: len() max() min() 找最大最小 字典也只看key list() 字典转列表只看key。元组的操作: t.index() t.count() len(t)元组内有一个列表,列表本身不变,但是列表内元素可变(联想地址)元组:元组一旦定义,不能修改,用小括号,可以为不同的数据类型。列表名后跟【】下标可以取数据,左为0,右为-1。
原创
发布博客 2024.05.18 ·
342 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

2024-3-6 Bert模型代码总结

4. 前向过程函数:将我们的文本输入分词器,分词器的几个参数的意思是:传入的文本,返回为张量,允许截断,最大长度为128,padding成128,即不够的填充,多余的截断,得到Bert需要的三类输入,但其实返回的是一个字典,我们从字典中取出输入,并放在gpu上,然后传入Bert中,得到两种输出,分别是未池化和池化后的,我们只要池化之后的,所谓池化在这里只是取第一个token,然后将这个token通过我们的分类头,得到输出。9. 训练流程和之前的训练流程一样,超参数的定义省略。接下来是main函数里的。
原创
发布博客 2024.03.06 ·
633 阅读 ·
7 点赞 ·
1 评论 ·
11 收藏

2024-3-1食物分类代码优化总结——迁移学习、半监督等

11. 训练函数,也就是说,我们开始训练流程后,若满足上一条的要求,将会调用get_semi_loader来获得semi_loader,在get_semi_loader中又会定义一个semi的Dataset,返回一个类对象,这个类对象的初始化中,就调用了data_pred,将符合要求的数据筛选出来,同时,get_semi_loader中又定义了semi的Dataloader,并返回这个loader,用于在训练流程中取数据。半监督学习即用有标签的数据,和通过我们设定标准准确率的无标签的数据进行训练。
原创
发布博客 2024.03.02 ·
1078 阅读 ·
19 点赞 ·
0 评论 ·
28 收藏

2024-2-29食物分类实战代码总结

之后初始化两个零矩阵,xi存储取出来的图片信息,yi用来存储取出的类型信息,j为图片名在列表中的下标,each为其图片名,再用字符串相加的方式将文件夹名与图片名相加得到地址,用函数将图片读到img中,此时图片为512*512,要将其改变大小,变为我们需要的224*224,将图片信息存储到xi中,xi第一个参数为个数/下标,后面的参数可代表图片信息,图片信息为224*224*3所以用代码表示方式,…14. 开始训练,每一轮都要定义该轮的训练和验证的loss,acc,还要记录此轮开始的时间。
原创
发布博客 2024.03.01 ·
1106 阅读 ·
28 点赞 ·
1 评论 ·
21 收藏

2024-2-26 Covid预测项目改进代码总结

自己编写一个mseLoss函数,loss即nn的均方差loss函数,定义一个正则项,以下原理解释来自chatgpt:在反向传播过程中,梯度下降算法不仅要考虑原始损失函数的梯度,还要考虑正则化项的梯度。这导致在更新模型参数时,大的参数将受到更大的惩罚,从而限制了模型参数的增长。在初始化中增加if语句,如果要选中所有特征,col idx为所有列(此时已去除第一列),否则选出k列,使用选择函数时,传入参数feature为data的第一列到倒数第二列,label为最后一列,k为初试的维度,column为第一行。
原创
发布博客 2024.02.26 ·
480 阅读 ·
10 点赞 ·
1 评论 ·
7 收藏
加载更多