2024-3-6 Bert模型代码总结

        值得注意的是Bert和transformer之间的区别:transformer是一种新型的神经网络架构,而Bert只是这个encoder-decoder中的encoder,

        

from transformers import BertModel, BertTokenizer,BertConfig

1. 从transformers中调入bert

class MyModel(nn.Module):

2. 开始写模型类

    def __init__(self,bert_path, device, num_class):
        super(MyModel, self).__init__()
        self.device = device

        # #不加载大佬的模型文件,只用其参数
        # bert_config = BertConfig.from_pretrained(bert_path)
        # self.bert = BertModel(bert_config)


        self.bert = BertModel.from_pretrained(bert_path)   #根据所传的下载的文件,可以直接读出模型所需的各种参数,就可以创建模型
        self.tokenizer = BertTokenizer.from_pretrained(bert_path)

        self.cls_head = nn.Linear(768,num_class)  #我们的模型=大佬的Bert(encoder) + 微调分类头   我们做的是二分类

3. 模型初始化函数&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值