值得注意的是Bert和transformer之间的区别:transformer是一种新型的神经网络架构,而Bert只是这个encoder-decoder中的encoder,
from transformers import BertModel, BertTokenizer,BertConfig
1. 从transformers中调入bert
class MyModel(nn.Module):
2. 开始写模型类
def __init__(self,bert_path, device, num_class):
super(MyModel, self).__init__()
self.device = device
# #不加载大佬的模型文件,只用其参数
# bert_config = BertConfig.from_pretrained(bert_path)
# self.bert = BertModel(bert_config)
self.bert = BertModel.from_pretrained(bert_path) #根据所传的下载的文件,可以直接读出模型所需的各种参数,就可以创建模型
self.tokenizer = BertTokenizer.from_pretrained(bert_path)
self.cls_head = nn.Linear(768,num_class) #我们的模型=大佬的Bert(encoder) + 微调分类头 我们做的是二分类
3. 模型初始化函数&

最低0.47元/天 解锁文章


被折叠的 条评论
为什么被折叠?



