Numpy

这篇博客介绍了NumPy库中的一些基本操作,包括删除数组元素、计算最大值、创建等差序列以及随机数生成。示例涵盖了矩阵删除、axis上的操作、以及不同类型的随机数分布。此外,还展示了如何使用reshape、pad和拼接等函数来改变数组形状和填充值。
摘要由CSDN通过智能技术生成

前面这些是作业上半部分,不知道为什么传不上来图片。有需要可以找我要原md文档,我用typora把截图插进去了。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FlPLoxXy-1630656352650)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20210902221941074.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ncy0Xbli-1630656352652)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20210902222023498.png)][外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FASP3WrX-1630656352654)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20210902222049171.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WJxLWc2B-1630656352656)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20210902222114201.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PfxRVhoI-1630656352658)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20210902213851792.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hPzdxvpp-1630656352659)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20210902213917477.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RMYmb4sp-1630656352660)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20210902213950117.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bR3yN0pE-1630656352661)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20210902214012353.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Q6kGSWmM-1630656352662)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20210902214102611.png)]

import numpy as np

matrix = [
    
                [1,2,3,4],
    
                [5,6,7,8],
    
                [9,10,11,12]
]

p1 = np.delete(matrix,1,0)

print('>>>>p1>>>>\n',p1)

p2 = np.delete(matrix,1,1)

print('>>>>p2>>>>\n',p2)

p3 = np.delete(matrix,1)

print('>>>>p3>>>>\n',p3)

p4 = np.delete(matrix,[0,1],1)

print('>>>>p2>>>>\n',p4)


>>>>p1>>>>
 [[ 1  2  3  4]
 [ 9 10 11 12]]
>>>>p2>>>>
 [[ 1  3  4]
 [ 5  7  8]
 [ 9 11 12]]
>>>>p3>>>>
 [ 1  3  4  5  6  7  8  9 10 11 12]
>>>>p2>>>>
 [[ 3  4]
 [ 7  8]
 [11 12]]



---------------------------------------------------------------------------

NameError                                 Traceback (most recent call last)

<ipython-input-1-bcda948f67ec> in <module>
     32 a3 = np.random.choice(np.array([0,1,2,3,4,5,6]),5)
     33 
---> 34 a4 = np,random.choice([0,1,2,3,4,5,6],5,replace = false)
     35 
     36 a5 = np.random.choice(np.array([0,1,2,3,4,5,6]),5,p = [0.1,0.1,0.1,0.1,0.1,0.1,0.4])


NameError: name 'random' is not defined
a1 = np.random.choice(7,5)

a2 = np.random.choice(np.array([0,1,2,3,4,5,6]),5)

a3 = np.random.choice(np.array([0,1,2,3,4,5,6]),5)


a4 = np.random.choice([0,1,2,3,4,5,6],5,replace = False)


a5 = np.random.choice(np.array([0,1,2,3,4,5,6]),5,[0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.4])
a1
array([0, 4, 4, 0, 0])
a2
array([0, 0, 2, 6, 4])
a3
array([5, 0, 4, 1, 5])
a4
array([0, 2, 1, 4, 6])
a5
array([4, 5, 2, 3, 4])
import numpy as np

a = np.array([[1,1,1],[2,2,2],[0,3,6]])

b1 = np.argmax(a)

b2 = np.argmax(a,axis = 0)

b3 = np.argmax(a,axis = 1)
a

array([[1, 1, 1],
       [2, 2, 2],
       [0, 3, 6]])
b1
8
b2
array([1, 2, 2], dtype=int64)
b3
array([0, 0, 2], dtype=int64)
y1 = np.linspace(-10.0,10.0)

y2 = np.linspace(1,10)

y3 = np.linspace(1,10,10,endpoint = False)

y4 = np.linspace(1,10,6,retstep = True)
y1
array([-10.        ,  -9.59183673,  -9.18367347,  -8.7755102 ,
        -8.36734694,  -7.95918367,  -7.55102041,  -7.14285714,
        -6.73469388,  -6.32653061,  -5.91836735,  -5.51020408,
        -5.10204082,  -4.69387755,  -4.28571429,  -3.87755102,
        -3.46938776,  -3.06122449,  -2.65306122,  -2.24489796,
        -1.83673469,  -1.42857143,  -1.02040816,  -0.6122449 ,
        -0.20408163,   0.20408163,   0.6122449 ,   1.02040816,
         1.42857143,   1.83673469,   2.24489796,   2.65306122,
         3.06122449,   3.46938776,   3.87755102,   4.28571429,
         4.69387755,   5.10204082,   5.51020408,   5.91836735,
         6.32653061,   6.73469388,   7.14285714,   7.55102041,
         7.95918367,   8.36734694,   8.7755102 ,   9.18367347,
         9.59183673,  10.        ])
y2
array([ 1.        ,  1.18367347,  1.36734694,  1.55102041,  1.73469388,
        1.91836735,  2.10204082,  2.28571429,  2.46938776,  2.65306122,
        2.83673469,  3.02040816,  3.20408163,  3.3877551 ,  3.57142857,
        3.75510204,  3.93877551,  4.12244898,  4.30612245,  4.48979592,
        4.67346939,  4.85714286,  5.04081633,  5.2244898 ,  5.40816327,
        5.59183673,  5.7755102 ,  5.95918367,  6.14285714,  6.32653061,
        6.51020408,  6.69387755,  6.87755102,  7.06122449,  7.24489796,
        7.42857143,  7.6122449 ,  7.79591837,  7.97959184,  8.16326531,
        8.34693878,  8.53061224,  8.71428571,  8.89795918,  9.08163265,
        9.26530612,  9.44897959,  9.63265306,  9.81632653, 10.        ])
y3
array([1. , 1.9, 2.8, 3.7, 4.6, 5.5, 6.4, 7.3, 8.2, 9.1])
y4
(array([ 1. ,  2.8,  4.6,  6.4,  8.2, 10. ]), 1.8)
x = np.array([[1,2,3],[4,5,6],[1,2,3]])

x.flatten()

array([1, 4, 1, 2, 5, 2, 3, 6, 3])
x.ravel()

array([1, 2, 3, 4, 5, 6, 1, 2, 3])

x.ravel('F')
array([1, 4, 1, 2, 5, 2, 3, 6, 3])
x.flatten('F')
array([1, 4, 1, 2, 5, 2, 3, 6, 3])
x.flatten()[1] = 20
x

array([[1, 2, 3],
       [4, 5, 6],
       [1, 2, 3]])
x.ravel()[1] = 20
x
array([[ 1, 20,  3],
       [ 4,  5,  6],
       [ 1,  2,  3]])
x.reshape(1,-1)
array([[ 1, 20,  3,  4,  5,  6,  1,  2,  3]])
x = np.array([1,2,3,6,7,8])
x
array([1, 2, 3, 6, 7, 8])
x[:,None]
array([[1],
       [2],
       [3],
       [6],
       [7],
       [8]])
x[np.newaxis,:]
array([[1, 2, 3, 6, 7, 8]])
x = np.array([[1,2,3],[2,3,4]])

np.prod(x)
144
np.prod(x,axis = 1)
array([ 6, 24])
np.prod(x,axis = 0)
array([ 2,  6, 12])
x = np.array([[1,2,3],[-3,2,4],[5,-2,9]])
y1 = np.maximum(0,x)

y2 = np.minimum(0,x)

x1 = x.copy()

x1[x1 < 0] = 0

x2 = x.copy()
y1
array([[1, 2, 3],
       [0, 2, 4],
       [5, 0, 9]])
y2
array([[ 0,  0,  0],
       [-3,  0,  0],
       [ 0, -2,  0]])
x1
array([[1, 2, 3],
       [0, 2, 4],
       [5, 0, 9]])
x2
array([[ 1,  2,  3],
       [-3,  2,  4],
       [ 5, -2,  9]])
x1 = x.copy()

x1[x1 > 0] = 0

x1
array([[ 0,  0,  0],
       [-3,  0,  0],
       [ 0, -2,  0]])
y1 = np.maximum(0,x)

y1

y2 = np.minimum(0,x)

y2

x1 = x.copy()

x1[x1 < 0] = 0

x1

x2 = x.copy()

x2
array([[ 1,  2,  3],
       [-3,  2,  4],
       [ 5, -2,  9]])
x2 = x

x2[x2 > 0] = 0

x
array([[ 0,  0,  0],
       [-3,  0,  0],
       [ 0, -2,  0]])
x1 = x.copy()

x1[x1 > 0] = 0

x1
array([[ 0,  0,  0],
       [-3,  0,  0],
       [ 0, -2,  0]])
x = np.array([[1,2,3],[-3,2,4],[5,-2,9]])
x3 = x[2]
x3
array([ 5, -2,  9])
x3[2] = 100
x
array([[  1,   2,   3],
       [ -3,   2,   4],
       [  5,  -2, 100]])
x = np.array([[1,2,3],[4,5,6]])

np.zeros_like(x)
array([[0, 0, 0],
       [0, 0, 0]])
x
array([[1, 2, 3],
       [4, 5, 6]])
n1 = np.random.rand(3,4)

n1


array([[0.51241305, 0.03112844, 0.67622601, 0.3310214 ],
       [0.76477322, 0.90250874, 0.51841767, 0.93479377],
       [0.058693  , 0.97071122, 0.78386746, 0.4092115 ]])
np.random.uniform(3,4)


3.7835562475449755
x = np.random.rand(2,3)
x
array([[0.92220626, 0.84053281, 0.63960289],
       [0.09037621, 0.37967566, 0.30503169]])
y = np.multiply(0.1,np.random.rand(2,3)) + 0.5
y
array([[0.51343938, 0.52941544, 0.59208827],
       [0.51808377, 0.58891011, 0.54387176]])
z = np.random.randint(2,9,(2,3))
z
array([[5, 8, 8],
       [3, 8, 2]])
m = np.random.randint(9,size = (2,3))
m
array([[2, 4, 1],
       [6, 8, 3]])
x = 'Y is a string'

tape(x)


---------------------------------------------------------------------------

NameError                                 Traceback (most recent call last)

<ipython-input-89-833b95e545d2> in <module>
      1 x = 'Y is a string'
      2 
----> 3 tape(x)
      4 


NameError: name 'tape' is not defined
type(x)
str
assert type(x) == str, 'x is not a str'

x = [1,2,3]

type(x)
list
assert type(x) == str, 'x is not a str'

Traceback(most recent call last):
    
     File"", line 1,in
    

  File "<ipython-input-97-0fe65c45b98a>", line 3
    Traceback(most recent call last):
                   ^
SyntaxError: invalid syntax
A = np.arange(95,99).reshape(2,2)
A
array([[95, 96],
       [97, 98]])
np.pad(A,((3,2),(2,3)),'constant',constant_values = (0,0))
array([[ 0,  0,  0,  0,  0,  0,  0],
       [ 0,  0,  0,  0,  0,  0,  0],
       [ 0,  0,  0,  0,  0,  0,  0],
       [ 0,  0, 95, 96,  0,  0,  0],
       [ 0,  0, 97, 98,  0,  0,  0],
       [ 0,  0,  0,  0,  0,  0,  0],
       [ 0,  0,  0,  0,  0,  0,  0]])
b = np.array([[[1,2],[3,4]],[[3,4],[7,8]],[[4,5],[1,2]]])
b
array([[[1, 2],
        [3, 4]],

       [[3, 4],
        [7, 8]],

       [[4, 5],
        [1, 2]]])
np.pad(b,((0,0),(1,1),(1,1)),'constant',constant_values = 0)
array([[[0, 0, 0, 0],
        [0, 1, 2, 0],
        [0, 3, 4, 0],
        [0, 0, 0, 0]],

       [[0, 0, 0, 0],
        [0, 3, 4, 0],
        [0, 7, 8, 0],
        [0, 0, 0, 0]],

       [[0, 0, 0, 0],
        [0, 4, 5, 0],
        [0, 1, 2, 0],
        [0, 0, 0, 0]]])
x = np.empty([3,2],dtype = int)

print(x)
[[0 0]
 [1 1]
 [1 1]]
import numpy as np

a = np.array([[1,2,3],[1,2,3]])

b = np.array([[1,2,3],[1,2,3]])

c = np.array([[1,4,3],[1,2,3]])

print((a == b).all())

print((a == c).all())

print((a == c).any())
True
False
True
c = np.array([[1,2],[3,4]])
c
array([[1, 2],
       [3, 4]])
c.astype(np.float32)
array([[1., 2.],
       [3., 4.]], dtype=float32)
x = np.array([1,3,5])

y = np.array([4,6])

XX,YY = np.meshgrid(x,y)
XX
array([[1, 3, 5],
       [1, 3, 5]])
YY
array([[4, 4, 4],
       [6, 6, 6]])
x = np.array([[3,4,5],[1,3,4]])

y = np.array([[1,1,1],[2,2,2]])

np.hstack((x,y))
array([[3, 4, 5, 1, 1, 1],
       [1, 3, 4, 2, 2, 2]])
np.vstack((x,y))
array([[3, 4, 5],
       [1, 3, 4],
       [1, 1, 1],
       [2, 2, 2]])
a = np.array([0.125,0.568,5.688])

np.round(a)
array([0., 1., 6.])
np.round(a,decimals = 2)
array([0.12, 0.57, 5.69])
np.floor(a)
array([0., 0., 5.])
np.ceil(a)
array([1., 1., 6.])
c = np.array([1,2,5,4])

c[:,np.newaxis]
array([[1],
       [2],
       [5],
       [4]])
c[np.newaxis]
array([[1, 2, 5, 4]])
a = np.array([[1,2,3,6],[4,5,6,6]])
a
array([[1, 2, 3],
       [4, 5, 6]])
a1 = a.reshape((1,2,4))

a1
array([[[1, 2, 3, 6],
        [4, 5, 6, 6]]])
b = np.array([[3,4,5,6],[1,2,3,4],[4,5,5,5]])
b
array([[3, 4, 5, 6],
       [1, 2, 3, 4],
       [4, 5, 5, 5]])
b1 = b.reshape((1,3,4)).transpose((1,0,2))

b1
array([[[3, 4, 5, 6]],

       [[1, 2, 3, 4]],

       [[4, 5, 5, 5]]])
a1 + b1
array([[[ 4,  6,  8, 12],
        [ 7,  9, 11, 12]],

       [[ 2,  4,  6, 10],
        [ 5,  7,  9, 10]],

       [[ 5,  7,  8, 11],
        [ 8, 10, 11, 11]]])
a1
array([[[1, 2, 3, 6],
        [4, 5, 6, 6]]])
b1
array([[[3, 4, 5, 6]],

       [[1, 2, 3, 4]],

       [[4, 5, 5, 5]]])
c = np.array([[[1,2,5],[3,4,6]],[[4,5,6],[7,8,9]]])
c
array([[[1, 2, 5],
        [3, 4, 6]],

       [[4, 5, 6],
        [7, 8, 9]]])
c.transpose(1,0,2)
array([[[1, 2, 5],
        [4, 5, 6]],

       [[3, 4, 6],
        [7, 8, 9]]])
c.transpose(1,2,0)
array([[[1, 4],
        [2, 5],
        [5, 6]],

       [[3, 7],
        [4, 8],
        [6, 9]]])
a = np.array([2,2,3,4,5,5,6,7])
a[0:7:2]
array([2, 3, 5, 6])
a
array([2, 2, 3, 4, 5, 5, 6, 7])
a[0::2]
array([2, 3, 5, 6])
a[::-1]
array([7, 6, 5, 5, 4, 3, 2, 2])
a
array([2, 2, 3, 4, 5, 5, 6, 7])
s = slice(0,7,2)
a[s]
array([2, 3, 5, 6])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值