背包九讲(闫氏DP分析法)(详细思路及证明)

背包问题共同点与区别

简单叙述:
在这里插入图片描述


简单证明:

标题: 证明关于背包问题优化到低维后的正向反向循环问题 证明关于背包问题优化到低维后的正向反向循环问题 证明关于背包问题优化到低维后的正向反向循环问题

例子01背包:
优化到一维后为从大到小循环,如下图循环所示:
其状态计算为:

	f[i][j] = f[i-1][j];
	if(j >= v[i]) f[i][j] = max(f[i][j], f[i-1][j-v[i]] + w[i]);

在这里插入图片描述
例子完全背包问题:
优化到一维后为从小到大循环,如下图所示:
其状态计算为:

 三重循环暴力:
 	f[i][j] = max(f[i][j], f[i-1][j - k*v[i]] + k * w[i]);
 两重循环: 
 	f[i][j] = f[i-1][j];
 	if(j >= v[i]) f[i][j] = max(f[i][j], f[i][j-v[i]] + w[i]);

在这里插入图片描述
可以找到区别:

01背包中, m a x max max函数里面的第二位为 f [ i − 1 ] [ j − v [ i ] ] f[i-1][j-v[i]] f[i1][jv[i]]
完全背包中, m a x max max函数里面的第二位为 f [ i ] [ j − v [ i ] ] f[i][j-v[i]] f[i][jv[i]]

其中: f [ i − 1 ] [ j − v [ i ] ] f[i-1][j-v[i]] f[i1][jv[i]]为上一层的状态,因为本次计算需要上一层的状态,且 j − v [ i ] j-v[i] jv[i]小于 j j j,为保持其上一层的状态不变,要先计算从大到小计算状态

反之, f [ i ] [ j − v [ i ] f[i][j-v[i] f[i][jv[i]为本层的状态,要保证计算 f [ i ] [ j ] f[i][j] f[i][j] f [ i ] [ j − v [ i ] f[i][j-v[i] f[i][jv[i]为本层的状态,必须从小到大先计算本层之前的状态

如此可知: m a x max max函数里第二位为上一层的 j j j之前的状态则从大到小
m a x max max函数里第二位为本层的 j j j之前的状态则从小到大
(具体的一维状态的解释,见下面的01背包问题的证明)


01背包问题

题意如下:
N N N 件物品和一个容量是 V V V 的背包。每件物品只能使用一次
i i i 件物品的体积是 v [ i ] v[i] v[i],价值是 w [ i ] w[i] w[i]
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。 输出最大价值。

输入格式
第一行两个整数, N N N V V V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N N N 行,每行两个整数 v [ i ] v[i] v[i] w [ i ] w[i] w[i],用空格隔开,分别表示第 i i i 件物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0 < N , V ≤ 1000 , 0 < v [ i ] , w [ i ] ≤ 1000 0<N,V≤1000, 0<v[i],w[i]≤1000 0<N,V10000<v[i],w[i]1000

输入样例

4 5 
1 2 
2 4 
3 4
4 5 

输出样例

8

闫氏DP分析法
分析思路如下:
01背包问题

注意:

f [ i − 1 ] [ j − v [ i ] ] + w [ i ] f[i-1][j-v[i]] + w[i] f[i1][jv[i]]+w[i] 不一定存在,特判一下即可


状态计算代码如下:

朴素版:

二维形式: 二维形式: 二维形式:
f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − v [ i ] ] + w [ i ] ) f[i][j] = max(f[i-1][j], f[i-1][j-v[i]] + w[i]) f[i][j]=max(f[i1][j],f[i1][jv[i]]+w[i])


   for(int i = 1; i <= n; i ++ )
   {
       for(int j = 0; j <= m; j ++ )
       {
           f[i][j] = f[i-1][j];
           if(j >= v[i]) f[i][j] = max(f[i][j], f[i-1][j-v[i]] + w[i]);
       }
   }

优化时间版(最终版):

一维形式: 一维形式: 一维形式:

f [ j ] = m a x ( f [ j ] , f [ j − v [ i ] ] + w [ i ] ) f[j] = max(f[j], f[j-v[i]] + w[i]) f[j]=max(f[j],f[jv[i]]+w[i])


优化方案:

思路:

( 1 ) (1) (1) f [ i ] f[i] f[i] 这层只用到了 f [ i − 1 ] f[i-1] f[i1]这一层可以简化为滚动数组来做

( 2 ) (2) (2) f [ i ] [ j ] f[i][j] f[i][j] 时只用到了 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j] f [ i − 1 ] [ j − v [ i ] ] f[i-1][j-v[i]] f[i1][jv[i]] ,可知 j j j j − v [ i ] j-v[i] jv[i]均小于等于 j j j,所以可以简化为一维的形式

具体实现流程及证明:

( 1 ) (1) (1) 直接删掉第一维, f [ i ] [ j ] f[i][j] f[i][j]变为 f [ j ] f[j] f[j]

( 2 ) (2) (2) 因为 j < v [ i ] j <v[i] j<v[i]时没意义,所以 j j j v [ i ] v[i] v[i] 开始枚举

( 3 ) (3) (3) 倒叙枚举 j ,计算 f [ j ] f[j] f[j]

对 (3) 倒叙枚举 j 的一些解释:
( 1 ) (1) (1) 一维的本层与上一层值的区别
  据上述分析,知:二维形式的 f [ i ] [ j ] f[i][j] f[i][j]为本层的, f [ i − 1 ] [ j ] f[i-1][j] f[i1][j]为上一层的,因为 i i i i − 1 i-1 i1 的差别,我们可以显而易见的区分。

  那么当一维形式的 f [ j ] f[j] f[j]由上一层更新为本层,没有了 i i i,如何区别?

  答:通过 m a x max max 计算过,为本层值。我们知道,本层的 f [ j ] f[j] f[j] 一定是经过上一层的 f [ j ] f[j] f[j] m a x max max 计算得来;那么我们可以得出小结论,在本层的 f [ j ] f[j] f[j]中,还未计算 m a x max max的为上一层的值,计算过 m a x max max的为本层的值

( 2 ) (2) (2) 解释一维变量并明确目标

目标:将二维数据直接去除一维以后,与原数据的含义相等。

解释一维数据:

   f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i − 1 ] [ j − v [ i ] ] + w [ i ] ) f[i][j] = max(f[i][j], f[i-1][j-v[i]] + w[i]) f[i][j]=max(f[i][j],f[i1][jv[i]]+w[i])如果直接删除第一维,将变成 f [ j ] = m a x ( f [ j ] , f [ j − v [ i ] + w [ i ] ) 。 f[j] = max(f[j],f[j-v[i] + w[i])。 f[j]=max(f[j],f[jv[i]+w[i])

  此方程的 f [ j − v [ i ] ] f[j-v[i]] f[jv[i]]在计算 f [ j ] f[j] f[j]之前就在本层被计算过。所以 f [ j − v [ i ] ] f[j-v[i]] f[jv[i]] 对应为 f [ i ] [ j − v [ i ] ] f[i][j-v[i]] f[i][jv[i]](本层值)与原题意的对应为 f [ i − 1 ] [ j − v [ i ] ] f[i-1][j-v[i]] f[i1][jv[i]](上一层值)不符合。

转化目标:
  所以我们的现在的目标是让 f [ j ] f[j] f[j] f [ j − v [ i ] ] f[j-v[i]] f[jv[i]]之前被计算,如此做之在计算 f [ j ] f[j] f[j] 时, f [ j − v [ i ] ] f[j-v[i]] f[jv[i]]还没被计算过,其对应为 f [ i − 1 ] [ j − v [ i ] ] f[i-1][j-v[i]] f[i1][jv[i]](上一层的值)。
( 3 ) (3) (3) 具体方法
  将 j j j从最大值 m m m开始枚举,倒叙枚举,使 f [ j ] f[j] f[j] f [ j − v [ i ] ] f[j-v[i]] f[jv[i]]之前更新,如此可以使当计算 f [ j ] f[j] f[j] 时, f [ j − v [ i ] ] f[j-v[i]] f[jv[i]] 还未计算 m a x max max(未上一层的值)。到此,一维简化完毕;

一维形式: 一维形式: 一维形式:

  for(int i = 1; i <= n; i ++ )
  {
      for(int j = m; j >= v[i]; j -- )
      {
          f[j] = max(f[j], f[j-v[i]] + w[i]);
      }
  }

最终版(一维形式)全部代码:

#include <bits/stdc++.h>

using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N];

int main()
{
    cin >> n >> m;
    
    for(int i = 1; i <= n; i ++ ) scanf("%d%d", &v[i], &w[i]);
    
    for(int i = 1; i <= n; i ++ )
    {
        for(int j = m; j >= v[i]; j -- )
        {
            f[j] = max(f[j], f[j-v[i]] + w[i]);
        }
    }
    
    cout << f[m] << endl; 
    return 0;
}

完全背包问题

题意如下:
N N N 件物品和一个容量是 V V V 的背包。每件物品可以无限次用。
i i i 件物品的体积是 v [ i ] v[i] v[i],价值是 w [ i ] w[i] w[i]
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。 输出最大价值。

输入格式
第一行两个整数, N N N V V V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N N N 行,每行两个整数 v [ i ] v[i] v[i] w [ i ] w[i] w[i],用空格隔开,分别表示第 i i i 件物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0 < N , V ≤ 1000 , 0 < v [ i ] , w [ i ] ≤ 1000 0<N,V≤1000, 0<v[i],w[i]≤1000 0<N,V10000<v[i],w[i]1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例

10

闫氏DP分析法
分析思路如下:
完全背包问题

注意:

f [ i ] [ j − v [ i ] ] + w [ i ] f[i][j-v[i]] + w[i] f[i][jv[i]]+w[i] 不一定存在,特判一下即可


状态计算代码如下:

暴力版:

二维三重循环形式: 二维三重循环形式: 二维三重循环形式:

f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i − 1 ] [ j − k ∗ v [ i ] ] + k ∗ w [ i ] ) f[i][j] = max(f[i][j], f[i-1][j - k*v[i]] + k * w[i]) f[i][j]=max(f[i][j],f[i1][jkv[i]]+kw[i])

注意: N N N 1000 1000 1000,一定会 T L E TLE TLE(时间超限)


具体实现:

for(int i = 1; i <= n; i ++ )
        for(int j = 0; j <= m; j ++ )
            for(int k = 0; k * v[i] <= j; k ++ )
                f[i][j] = max(f[i][j], f[i-1][j - k*v[i]] + k * w[i]);

优化时间版:

二维两重循环形式: 二维两重循环形式: 二维两重循环形式:
f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] , f [ i ] [ j − v [ i ] ] + w [ i ] ) f[i][j] = max(f[i-1][j], f[i][j-v[i]] + w[i]) f[i][j]=max(f[i1][j],f[i][jv[i]]+w[i])

优化方案:

思路:
由上图的闫氏DP分析法的图可以知道:
f o r ( i n t k = 0 ; k ∗ v [ i ] < = j ; k + + ) for(int k = 0; k * v[i] <= j; k ++ ) for(intk=0;kv[i]<=j;k++)
   f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i − 1 ] [ j − k ∗ v [ i ] ] + k ∗ w [ i ] ) f[i][j] = max(f[i][j], f[i-1][j - k*v[i]] + k * w[i]) f[i][j]=max(f[i][j],f[i1][jkv[i]]+kw[i])
   f [ i ] [ j − v [ i ] ] = m a x ( f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − k ∗ v [ i ] ] + ( k − 1 ) ∗ w [ i ] ) f[i][j-v[i]] = max(f[i-1][j], f[i-1][j - k*v[i]] + (k-1) * w[i]) f[i][jv[i]]=max(f[i1][j],f[i1][jkv[i]]+(k1)w[i])
所以: f [ i ] [ j ] f[i][j] f[i][j] m a x max max的第二项循环可以转化为一个表达式,即 f [ i ] [ − v [ i ] ] + w [ i ] f[i][-v[i]] + w[i] f[i][v[i]]+w[i],所以可以优化掉一重循环

注意:
此处与01背包很像,两者区别为 m a x max max 中的第二项
见如下对比:
01 背包: f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − v [ i ] ] + w [ i ] ) f[i][j] = max(f[i-1][j], f[i-1][j-v[i]] + w[i]) f[i][j]=max(f[i1][j],f[i1][jv[i]]+w[i])
完全背包: f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] , f [ i ] [ j − v [ i ] ] + w [ i ] ) f[i][j] = max(f[i-1][j], f[i][j-v[i]] + w[i]) f[i][j]=max(f[i1][j],f[i][jv[i]]+w[i])


具体实现:

for(int i = 1; i <= n; i ++ )
        for(int j = 0; j <= m; j ++ )
            {
                f[i][j] = f[i-1][j];
                if(j >= v[i]) f[i][j] = max(f[i][j], f[i][j-v[i]] + w[i]);
            }

优化时间和空间版:(最终版)

一维两重循环形式: 一维两重循环形式: 一维两重循环形式:
f [ j ] = m a x ( f [ j ] , f [ j − v [ i ] ] + w [ i ] ) ; f[j] = max(f[j], f[j-v[i]] + w[i]); f[j]=max(f[j],f[jv[i]]+w[i]);

优化方案:

思路:
与 01背包 类似
( 1 ) (1) (1) f [ i ] [ j ] f[i][j] f[i][j] 时只用到了 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j] f [ i ] [ j − v [ i ] ] f[i][j-v[i]] f[i][jv[i]] ,可知 j j j j − v [ i ] j-v[i] jv[i]均小于等于 j j j,所以可以简化为一维的形式

具体实现流程及证明:

( 1 ) (1) (1) 直接删掉第一维, f [ i ] [ j ] f[i][j] f[i][j]变为 f [ j ] f[j] f[j]

( 2 ) (2) (2) 因为 j < v [ i ] j <v[i] j<v[i]时没意义,所以 j j j v [ i ] v[i] v[i] 开始枚举

( 3 ) (3) (3) 正序枚举 j ,计算 f [ j ] f[j] f[j]

对 (3) 正叙枚举 j 的一些解释:

( 1 ) (1) (1) 变量的解释
关于 变量 f [ j ] f[j] f[j] 的理解与01背包的理解一样,没经过 m a x max max处理的为上一层的数据,经过 m a x max max 处理的为本层 f [ j ] f[j] f[j](具体分析流程见 01 背包问题的一维解析,此处不再赘述)

( 2 ) (2) (2) 明确目的并对比二维与一维变量
目标:
 将二维数据直接去除一维以后,与原数据的含义相等。
解释一维数据:

 对 f [ i ] [ j ] = f [ i − 1 ] [ j ] f[i][j] = f[i-1][j] f[i][j]=f[i1][j] 变为 f [ j ] = f [ j ] f[j] = f[j] f[j]=f[j] 的解释:
  左 f [ j ] f[j] f[j] 本来就是本层数据,待更新
  右 f [ j ] f[j] f[j] 为经过 本层的 m a x max max,为上一层的数据
与原数据含义相符

 对 f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i ] [ j − v [ i ] ] + w [ i ] ) f[i][j] = max(f[i][j], f[i][j-v[i]] + w[i]) f[i][j]=max(f[i][j],f[i][jv[i]]+w[i]) 变为 f [ j ] = m a x ( f [ j ] , f [ j − v [ i ] ] + w [ i ] ) f[j] = max(f[j], f[j-v[i]] + w[i]) f[j]=max(f[j],f[jv[i]]+w[i]) 的解释:
  左 f [ j ] f[j] f[j] 待更新没什么好的说的
  右 m a x max max 中 第一项 f [ j ] f[j] f[j],为未更新的 f [ j ] f[j] f[j] 含义为本层的,
  右 m a x max max 中 第二项 f [ j − v [ i ] ] + w [ i ] f[j-v[i]] + w[i] f[jv[i]]+w[i] 因为正序枚举 j j j 所以 f [ j − v [ i ] ] f[j-v[i]] f[jv[i]] 在本层的 f [ j ] f[j] f[j] 之前计算过,为本层的 f [ j − v [ i ] ] f[j-v[i]] f[jv[i]] 与原含义相等
与原数据含义相符


具体实现:

for(int i = 1; i <= n; i ++ )
    {
        for(int j = v[i]; j <= m; j ++ )
        {
            f[j] = max(f[j], f[j-v[i]] + w[i]);
        }
    }

最终版(一维形式)完整代码如下:

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N];

int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; i ++)
        cin >> v[i] >> w[i];
        
    for(int i = 1; i <= n; i ++ )
    {
        for(int j = v[i]; j <= m; j ++ )
        {
            f[j] = max(f[j], f[j-v[i]] + w[i]);
        }
    }
    
    cout << f[m] << endl;
    
    return 0;
}

多重背包问题 I I I

题意如下:
N N N 件物品和一个容量是 V V V 的背包。
i i i 件物品最多有 s [ i ] s[i] s[i],每件体积是 v [ i ] v[i] v[i],价值是 w [ i ] w[i] w[i]
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。 输出最大价值。

输入格式
第一行两个整数, N N N V V V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N N N 行,每行两个整数 v [ i ] v[i] v[i] w [ i ] w[i] w[i],用空格隔开,分别表示第 i i i 件物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0 < N , V ≤ 100 , 0 < v [ i ] , w [ i ] , s [ i ] ≤ 100 0<N,V≤100, 0<v[i],w[i], s[i]≤100 0<N,V1000<v[i],w[i],s[i]100

输入样例

4 5 
1 2 
2 4 
3 4
4 5 

输出样例

10

思路:
题目范围较小,按照完全背包的暴力版枚举即可,在循环个数时,加一个限制条件即可

暴力版:

二维三重循环形式: 二维三重循环形式: 二维三重循环形式:

f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i − 1 ] [ j − k ∗ v [ i ] ] + k ∗ w [ i ] ) f[i][j] = max(f[i][j], f[i-1][j - k*v[i]] + k * w[i]) f[i][j]=max(f[i][j],f[i1][jkv[i]]+kw[i])


具体实现:

for(int i = 1; i <= n; i ++ )
        for(int j = 0; j <= m; j ++ )
            for(int k = 0; k * v[i] <= j && k <= s[i]; k ++ )
                f[i][j] = max(f[i][j], f[i-1][j - k*v[i]] + k * w[i]);

整体代码如下:

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110;

int n,m;
int v[N],w[N],s[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    
    for(int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i] >> s[i];
    
    for(int i = 1; i <= n; i ++ )
    {
        for(int j = 0; j <= m; j ++ )
        {
            for(int k = 0; k <= s[i] && k * v[i] <= j; k ++ )
            {
                f[i][j] = max(f[i][j],f[i-1][j - v[i] * k ] + w[i] * k);
            }
        }
    }
    
    cout << f[n][m] << endl;
    
    return 0;
}

一维两重循环形式 一维两重循环形式 一维两重循环形式

思路:
因为涉及第 i − 1 i - 1 i1 层的状态,所以我们从大到小枚举(至于为什么,可以看上面01背包问题的讲解)

具体实现:

for(int i = 1; i <= n; i ++ )
    {
        for(int j = m; j >= 0; j -- )
        {
            for(int k = 0; k <= s[i] && k * v[i] <= j; k ++ )
            {
                f[j] = max(f[j],f[j - v[i] * k ] + w[i] * k);
            }
        }
    }

整体代码如下:

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110;

int n,m;
int v[N],w[N],s[N];
int f[N];

int main()
{
    cin >> n >> m;
    
    for(int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i] >> s[i];
    
    for(int i = 1; i <= n; i ++ )
    {
        for(int j = m; j >= 0; j -- )
        {
            for(int k = 0; k <= s[i] && k * v[i] <= j; k ++ )
            {
                f[j] = max(f[j],f[j - v[i] * k ] + w[i] * k);
            }
        }
    }
    
    cout << f[m] << endl;
    
    return 0;
}

多重背包问题 I I II II

题意如下:
N N N 件物品和一个容量是 V V V 的背包。
i i i 件物品最多有 s [ i ] s[i] s[i],每件体积是 v [ i ] v[i] v[i],价值是 w [ i ] w[i] w[i]
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。 输出最大价值。

输入格式
第一行两个整数, N N N V V V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N N N 行,每行两个整数 v [ i ] v[i] v[i] w [ i ] w[i] w[i],用空格隔开,分别表示第 i i i 件物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0 < N ≤ 1000 , 0 < V < 2000 , 0 < v [ i ] , w [ i ] , s [ i ] ≤ 2000 0<N≤1000,0 <V<2000, 0<v[i],w[i],s[i]≤2000 0<N10000<V<20000<v[i],w[i],s[i]2000

输入样例

4 5 
1 2 
2 4 
3 4
4 5 

输出样例

10

思路:
题目范围较大,按照完全背包的暴力版枚举时间复杂度为O(10^9),一定会TLE,

考点:
多重背包问题的二进制优化方案,
将第 i i i 个物品可以选 s [ i ] s[i] s[i] 次,分为可以选 c n t cnt cnt 个组, c n t cnt cnt组的总和为 s [ i ] s[i] s[i]

结论:

c n t cnt cnt l o g ( 2 ) log(2) log(2) + s [ i ] s[i] s[i]剩余的部分(无法分为2的整次幂的部分)

验证正确性:
7 = 111[2]
7 = 1 + 2 + 4
8 = 111[2]+1[10]
8 = 1 + 2 + 4 + 1
20 = 1111[2] + 4[10]
20 = 1 + 2 + 3 + 4 + 8 + 4

具体实现:

struct Good
{
    int v, w;
};

vector<Good> goods;
for(int i = 0; i < n; i ++ )
{
    int v, w, s;
    cin >> v >> w >> s;
    for(int k = 1; k <= s; k *= 2)
    {
        s -= k;
        goods.push_back({v*k, w*k});
    }
    if(s > 0) goods.push_back({v*s, w*s});
   }


整体代码如下:

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>

using namespace std;

const int N = 2010;

int n, m;
int f[N];

struct Good
{
    int v, w;
};

int main()
{
    cin >> n >> m;
    
    vector<Good> goods;
    for(int i = 0; i < n; i ++ )
    {
        int v, w, s;
        cin >> v >> w >> s;
        for(int k = 1; k <= s; k *= 2)
        {
            s -= k;
            goods.push_back({v*k, w*k});
        }
        if(s > 0) goods.push_back({v*s, w*s});
    }
    
    for(int i = 0; i < goods.size(); i ++ )
    {
        for(int j = m; j >= goods[i].v; j -- )
        {
            f[j] = max(f[j], f[j-goods[i].v] + goods[i].w);
        }
    }
    
    cout << f[m] << endl;
    
    return 0;
}

分组背包问题

题意如下:
N N N 组物品和一个容量是 V V V 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 v [ i ] [ j ] v[i][j] v[i][j],价值是 w [ i ] [ j ] w[i][j] w[i][j],其中 i i i 是组号, j j j 是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式
第一行有两个整数 N N N V V V,用空格隔开,分别表示物品组数和背包容量。

接下来有 N N N 组数据:

每组数据第一行有一个整数 s [ i ] s[i] s[i],表示第 i i i 个物品组的物品数量; 每组数据接下来有 s [ i ] s[i] s[i] 行,每行有两个整数 v [ i ] [ j ] v[i][j] v[i][j], w [ i ] [ j ] w[i][j] w[i][j],用空格隔开,分别表示第 i i i 个物品组的第 j j j 个物品的体积和价值;
输出格式
输出一个整数,表示最大价值。

数据范围
0 < N , V ≤ 1000 < s [ i ] ≤ 100 0<N,V≤100 0<s[i]≤100 0<N,V1000<s[i]100
0 < v [ i ] [ j ] , w [ i ] [ j ] ≤ 100 0<v[i][j],w[i][j]≤100 0<v[i][j],w[i][j]100

输入样例

3 5
2
1 2
2 4
1
3 4
1
4 5

输出样例

8

思路:
多重背包问题 I I I 的普通版,与多重背包问题 I I I 相比,此问题是将 s [ i ] s[i] s[i] 个分开计算,多重背包问题 I I I 是 打包成 s [ i ] s[i] s[i] 组,暴力枚举即可,与多重背包问题 I I I 思路一样

暴力版:

二维形式: 二维形式: 二维形式:

f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i − 1 ] [ j − v [ i ] [ k ] ] + w [ i ] [ k ] ) f[i][j] = max(f[i][j], f[i-1][j - v[i][k]] + w[i][k]) f[i][j]=max(f[i][j],f[i1][jv[i][k]]+w[i][k])

一维形式: 一维形式: 一维形式:
f [ j ] = m a x ( f [ j ] , f [ j − v [ i ] [ k ] ] + w [ i ] [ k ] ) f[j] = max(f[j], f[j - v[i][k]] + w[i][k]) f[j]=max(f[j],f[jv[i][k]]+w[i][k])


具体实现:

for(int i = 1; i <= n; i ++ )
        for(int j = m; j >= 0; j -- )
            for(int k = 0; k <= s[i]; k ++ )
                if(j >= v[i][k]) f[j] = max(f[j], f[j - v[i][k]]+w[i][k]);

整体代码如下:

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 210;

int n, m;
int v[N][N], w[N][N], s[N];
int f[N];

int main()
{
    cin >> n >> m;
    
    for(int i = 1; i <= n; i ++ )
    {
        cin >> s[i];
        
        for(int j = 0; j < s[i]; j ++ )
            cin >> v[i][j] >> w[i][j];
    }
    
    for(int i = 1; i <= n; i ++ )
        for(int j = m; j >= 0; j -- )
            for(int k = 0; k <= s[i]; k ++ )
                if(j >= v[i][k]) f[j] = max(f[j], f[j - v[i][k]]+w[i][k]); 
                
    cout << f[m] << endl;
    
    return 0;
}
  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AC自动寄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值