状态压缩DP(蒙德里安的梦想,最短Hamilton路径)

目录

291. 蒙德里安的梦想

91. 最短Hamilton路径


291. 蒙德里安的梦想

求把 N×M 的棋盘分割成若干个 1×2 的长方形,有多少种方案。

例如当 N=2,M=4 时,共有 5 种方案。当 N=2,M=3 时,共有 3 种方案。

如下图所示:

输入格式

输入包含多组测试用例。

每组测试用例占一行,包含两个整数 N 和 M。

当输入用例 N=0,M=0 时,表示输入终止,且该用例无需处理。

输出格式

每个测试用例输出一个结果,每个结果占一行。

数据范围

1 ≤ N , M ≤ 11

输入样例:

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

输出样例:

1
0
1
2
3
5
144
51205

总体思路

(1)核心:先放横着的,再放竖着的;如果横着的方块固定,竖着的方块自然也固定,得到总方案数为,只放横着的方块的合法方案数

状态表示的前提:表示第 i 列的状态可以用二进制表示,0表示前一列未伸出到该列,1表示伸出到了该列,如 第 2 列的状态为 010 ,表示为 第 1 列的第一行未伸到第二列,第 1 列的第二行伸出到了第二列,第一列的第三行未伸到第二列,如下图表示 010

进一步解释

前一列未伸出到该列,含义为 横向的两格方块占据了第 i-2 列 和 i-1列

前一列伸出到该列,含义为 横向的两格方块占据了第 i-1 列 和 i列

(2)如何判断是否合法:不重叠,不连续奇数0

重叠不合法状态的解释:如果第 i-2 列 和 第 i-1 列同时为 1 ,意味着 i-1 列被两个横向方格占据,为不合法的情况

不连续奇数个零的的解释:竖着的方块为两格方块,判断每一列中放完横着的方块后,0如果连续的个数为奇数个,就无法放竖方块,为不合法方案,(合法方案不能有空格子,必须都放方块)

闫氏DP分析法:

 解释两个条件:

(1):第 i-1 列伸出的不能与第 i 列存在的重叠

(2):空格长度必须是偶数,竖方块高度为2

时间复杂度分析:

共有 11 列,第 i-1 行有 2^11 种状态,第 i 列有2^11种状态,11*2^11*2^11 = 4000 0000 时间复杂度较危险,要预处理出来(1)连续偶数的状态(2)对于 i - 1的每种状态的匹配的状态的个数,如此可降低时间复杂度

最后要输出的结果为:f[m][0] 在前 m-1 列摆好,且第m列伸出为0的状态的方案,我们是从0 开始的所以,前m-1正好符合我们的需求

代码如下: 

#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

typedef long long LL;

const int N = 12, M = 1 << N;

int n, m;
LL f[N][M];
vector<int> state[M];
bool st[M];

int main()
{
    while(scanf("%d%d", &n, &m), n || m)
    {
        // 预处理每种状态的正确性(偶数连续)
        for(int i = 0; i < 1 << n; i ++ )
        {
            int cnt = 0;
            bool is_valid = true;
            for(int j = 0; j < n; j ++ )
            {
                if((i >> j) & 1)
                {
                    if(cnt & 1) 
                    {
                        is_valid = false;
                        break;
                    }
                    cnt = 0;
                }
                else cnt ++;
            }
            
            if(cnt & 1) is_valid = false;
            st[i] = is_valid;
        }
        
        //判断 每种状态可以匹配的下一种状态
        //(i-1行的所有状态可以匹配的第i行的状态)
        for(int i = 0; i < 1 << n; i ++ )
        {
            state[i].clear();
            for(int j = 0; j < 1 << n; j ++ )
            {
                if((i & j) == 0 && st[i|j]) state[i].push_back(j);
            }
        }
        
        // dp
        
        memset(f, 0, sizeof f);
        
        f[0][0] = 1;
        
        for(int i = 1; i <= m; i ++ )
        {
            for(int j = 0; j < 1 << n; j ++ )
            {
                for(auto k : state[j])
                {
                    f[i][j] += f[i-1][k];
                }
            }
        }
        
        cout << f[m][0] << endl;
        
    }
    
    return 0;
}

91. 最短Hamilton路径

给定一张 n 个点的带权无向图,点从 0∼n−1 标号,求起点 0 到终点 n−1 的最短 Hamilton 路径。

Hamilton 路径的定义是从 0 到 n−1 不重不漏地经过每个点恰好一次。

输入格式

第一行输入整数 n。

接下来 n 行每行 n 个整数,其中第 i 行第 j 个整数表示点 i 到 j 的距离(记为 a[i,j])。

对于任意的 x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]≥a[x,z]。

输出格式

输出一个整数,表示最短 Hamilton 路径的长度。

数据范围

1≤n≤20
0≤a[i,j]≤10^7

输入样例:

5
0 2 4 5 1
2 0 6 5 3
4 6 0 8 3
5 5 8 0 5
1 3 3 5 0

输出样例:

18

思路: 闫氏DP分析法

 状态压缩DP的关键:将经过的点压缩为一个二进制整数 i (仍然以十进制表示),例如 10110 表示经过了 2,3,5点  

状态计算思路:设 k 为 j 的前一个点,枚举 i 中所有经过 k 的点的路径,挑选最短的路径+w[k][j]

初始化:f[1][0] = 0(表示[0,0]状态,从0到0长度0),f 为 0x3f3f3f3f 

 代码如下

#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

const int N = 20, M = 1 << N;

int n, m;
int w[N][N];
int f[M][N];

int main()
{
    cin >> n;
    
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n; j ++ )
            cin >> w[i][j];
            
    memset(f, 0x3f, sizeof f);
    f[1][0] = 0;
    
    for (int i = 0; i < 1 << n; i ++ )
        for(int j = 0; j < n; j ++ )
            if(i >> j & 1) // 判断每一点是否经过,若经过此点,则枚举之前的点更新此点
                for (int k = 0; k < n; k ++ ) 
                    if( i - (1 << j) >> k & 1) // 枚举此路径除了 j 的其他点
                        // 更新
                        f[i][j] = min(f[i][j], f[i - (1 << j)][k] + w[k][j]);
    
    // 最终的状态为 经过所有点,到达 n-1 点,即、f[n位1][n-1]                  
    cout << f[ (1 << n) - 1][n-1] << endl;
    
    return 0;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AC自动寄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值