01 Kakfa面试疯狂轰炸44问
1.1 Kakfa基础面试篇
-
1.Kafka的用途有哪些?使用场景如何?
-
2.Kafka中的ISR、AR又代表什么?ISR的伸缩又指什么
-
3.Kafka中的HW、LEO、LSO、LW等分别代表什么?
-
4.Kafka中是怎么体现消息顺序性的?
-
5.Kafka中的分区器、序列化器、拦截器是否了解?它们之间的处理顺序是什么?
-
6.Kafka生产者客户端的整体结构是什么样子的?
-
7.Kafka生产者客户端中使用了几个线程来处理?分别是什么?
-
8.Kafka的旧版Scala的消费者客户端的设计有什么缺陷?
-
9.“消费组中的消费者个数如果超过topic的分区,那么就会有消费者消费不到数据”这句话是否正确?如果正确,那么有没有什么hack的手段?
-
10.有哪些情形会造成重复消费?
-
11.那些情景下会造成消息漏消费?
-
12.KafkaConsumer是非线程安全的,那么怎么样实现多线程消费?
-
13.简述消费者与消费组之间的关系
-
14.当你使用kafka-topics.sh创建(删除)了一个topic之后,Kafka背后会执行什么逻辑?
-
15.topic的分区数可不可以增加?如果可以怎么增加?如果不可以,那又是为什么?
-
16.topic的分区数可不可以减少?如果可以怎么减少?如果不可以,那又是为什么?
-
17.创建topic时如何选择合适的分区数?
1.2 Kakfa进阶面试篇
-
1.Kafka目前有哪些内部topic,它们都有什么特征?各自的作用又是什么?
-
2.优先副本是什么?它有什么特殊的作用?
-
3.Kafka有哪几处地方有分区分配的概念?简述大致的过程及原理
-
4.简述Kafka的日志目录结构
-
5.Kafka中有哪些索引文件?
-
6.如果我指定了一个offset,Kafka怎么查找到对应的消息?
-
7.如果我指定了一个timestamp,Kafka怎么查找到对应的消息?
-
8.聊一聊你对Kafka的Log Retention的理解
-
9.聊一聊你对Kafka的Log Compaction的理解
-
10.聊一聊你对Kafka底层存储的理解
-
11.聊一聊Kafka的延时操作的原理
-
12聊一聊Kafka控制器的作用
-
13.Kafka的旧版Scala的消费者客户端的设计有什么缺陷?
-
14.消费再均衡的原理是什么?(提示:消费者协调器和消费组协调器)
-
15.Kafka中的幂等是怎么实现的?
1.3 Kakfa高级面试篇
-
1.Kafka中的事务是怎么实现的?
-
2.失效副本是指什么?有哪些应对措施?
-
3.多副本下,各个副本中的HW和LEO的演变过程
-
4.Kafka在可靠性方面做了哪些改进?(HW, LeaderEpoch)
-
5.为什么Kafka不支持读写分离?
-
6.Kafka中的延迟队列怎么实现
-
7.Kafka中怎么实现死信队列和重试队列?
-
8.Kafka中怎么做消息审计?
-
9.Kafka中怎么做消息轨迹?
-
10.怎么计算Lag?(注意read_uncommitted和read_committed状态下的不同)
-
11.Kafka有哪些指标需要着重关注?
-
12.Kafka的那些设计让它有如此高的性能?
02 总结:绘上一张Kakfa架构思维大纲脑图(xmind)
其实关于Kafka,能问的问题实在是太多了,扒了几天,最终筛选出44问:基础篇17问、进阶篇15问、高级篇12问,个个直戳痛点,不知道如果你不着急看答案,又能答出几个呢?
小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数初中级Java工程师,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Java开发全套学习资料》送给大家,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频
如果你觉得这些内容对你有帮助,可以添加下面V无偿领取!(备注Java)
最后
毕竟工作也这么久了 ,除了途虎一轮,也七七八八面试了不少大厂,像阿里、饿了么、美团、滴滴这些面试过程就不一一写在这篇文章上了。我会整理一份详细的面试过程及大家想知道的一些问题细节
美团面试经验
字节面试经验
菜鸟面试经验
蚂蚁金服面试经验
唯品会面试经验
因篇幅有限,图文无法详细发出
hsn-1710218086693)]
蚂蚁金服面试经验
[外链图片转存中…(img-fRLAHbXR-1710218086693)]
唯品会面试经验
[外链图片转存中…(img-czpuorwU-1710218086693)]
因篇幅有限,图文无法详细发出