Mindscope模型
文章平均质量分 71
mindscope
Sam9029
应无所往
展开
-
《昇思 25 天学习打卡营第 25 天 | 基于 MindSpore 实现 BERT 对话情绪识别 》
《昇思 25 天学习打卡营第 25 天 | 基于 MindSpore 实现 BERT 对话情绪识别 》原创 2024-07-27 19:09:17 · 446 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 24 天 | MindNLP ChatGLM-6B 聊天应用实现 》
《昇思 25 天学习打卡营第 24 天 | MindNLP ChatGLM-6B 聊天应用实现 》原创 2024-07-27 19:08:15 · 317 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 23 天 | 基于MindSpore的GPT-2文本摘要 》
文本摘要任务旨在从给定的文本中生成简短的摘要,同时保留关键信息。本案例使用MindSpore框架实现基于GPT-2模型的文本摘要。原创 2024-07-26 10:28:51 · 588 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 22 天 | 使用 RNN 进行情感分类 》
情感分类是自然语言处理中的一项基础任务,目的是判断文本所表达的情感倾向,如正面或负面。设计预测函数,对自定义输入文本进行情感分类预测。# 预测文本情感# ...原创 2024-07-26 10:28:19 · 567 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 21 天 | LSTM+CRF序列标注模型实现 》
序列标注是信息抽取中的一个关键任务,包括分词、词性标注、命名实体识别等。例如,在命名实体识别中,需要识别文本中的地名、人名等实体。CRF层的实现包括前向训练部分和解码部分。# 初始化CRF层参数# ...# 根据传入的emissions和tags决定是前向计算还是解码# ...原创 2024-07-24 22:18:21 · 448 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 20 天 | Pix2Pix实现图像转换 》
Pix2Pix是一种基于条件生成对抗网络(cGAN)的图像转换模型,能够实现从一种图像风格到另一种风格的转换,如从黑白图像到彩色图像,或从线稿到实物图像等。( \mathbf{x} ):观测图像。( \mathbf{z} ):随机噪声。( \mathbf{y} = G(\mathbf{x}, \mathbf{z}) ):生成器网络。( D(\mathbf{x}, G(\mathbf{x}, \mathbf{y})) ):判别器网络。原创 2024-07-24 22:17:43 · 634 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 19 天 | 生成式对抗网络(GAN)实践指南 》
生成式对抗网络(GAN)是一种前沿的无监督学习模型,由 Goodfellow 等人于 2014 年提出。GAN 由两部分组成:生成器(Generator)和判别器(Discriminator)。生成器负责生成逼真的假图像,而判别器则负责区分图像是真实的还是生成器生成的。原创 2024-07-23 22:34:40 · 360 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 18 天 | 扩散模型(Diffusion Models) 》
扩散模型(Diffusion Models),特别是去噪扩散概率模型(DDPM),在图像、音频、视频生成领域取得了显著成果。这类模型通过逐步添加和去除噪声来生成数据,与GAN或VAE等其他生成模型相比,具有独特的优势。Diffusion模型包括两个主要过程:正向扩散过程和逆向去噪过程。正向过程逐步添加噪声,逆向过程则通过训练神经网络逐步去除噪声,恢复图像。DDPM论文指出扩散模型是图像生成的有前途的方向。尽管如此,扩散模型的主要缺点是生成图像需要多次正向传递。原创 2024-07-23 22:32:14 · 513 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 17 天 | CycleGAN图像风格迁移 》
CycleGAN是一种用于图像风格迁移的深度学习模型,它能够在没有成对训练样本的情况下,实现图像从一种风格到另一种风格的转换。这项技术在艺术创作、图像编辑等领域有着广泛的应用。原创 2024-07-21 09:25:31 · 397 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 16 天 | 基于 MobileNetv2 的垃圾分类 》
MobileNetV2 是一个轻量级的 CNN 网络,专为移动端、嵌入式或 IoT 设备设计。它通过使用深度可分离卷积(Depthwise Separable Convolution)减少模型参数和运算量,同时保持了较高的准确率。MobileNetV2 引入了倒残差结构(Inverted residual block)和 Linear Bottlenecks 设计,进一步提升了模型性能。原创 2024-07-21 09:23:59 · 475 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 15 天 | 基于MindNLP+MusicGen生成自己的个性化音乐 》
MusicGen是由Meta AI的Jade Copet等人提出的一种基于单个语言模型(LM)的音乐生成模型,能够根据文本描述或音频提示生成高质量的音乐样本。该模型的研究成果发表在论文《Simple and Controllable Music Generation》中。原创 2024-07-20 19:38:18 · 461 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 14 天 | 基于MindSpore的红酒分类实验 》
本次实验的目的是了解K近邻(K-Nearest Neighbors, KNN)算法的基本概念,并学习如何使用华为的MindSpore框架实现KNN实验。KNN是一种基础的分类和回归算法,通过计算测试样本与训练样本之间的距离,找出最近的K个邻居,并通过多数表决的方式确定测试样本的类别。原创 2024-07-20 19:37:14 · 600 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 13 天 | SSD目标检测 》
SSD是一种流行的目标检测算法,它通过单次前向传播来预测多个类别的边界框。SSD评估通常使用mAP(mean Average Precision)作为性能指标。原创 2024-07-13 10:00:12 · 504 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 12 天 | Vision Transformer(ViT)图像分类 》
Vision Transformer(ViT)是一种结合了自然语言处理中流行的Transformer模型和计算机视觉任务的深度学习模型。它不依赖于传统的卷积神经网络(CNN)结构,而是直接使用Transformer的Encoder部分来处理图像数据。原创 2024-07-13 09:58:53 · 458 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 11 天 | ResNet50 图像分类 》
make_layerResNet网络模型最重要的步骤,定义 ResNet 模型类型函数# 第一个卷积层,输入channel为3(彩色图像),输出channel为64# 最大池化层,缩小图片的尺寸# 各个残差网络结构块定义# 平均池化层# flattern层# 全连接层# // ... 省略return x然后定义 _resnet 函数加载 使用 ResNet 网络模型类再使用 _resnet 函数构建 resnet50 网络模型"""ResNet50模型"""原创 2024-07-07 15:14:01 · 1183 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 10 天 | ResNet50 迁移学习 》
在机器学习和深度学习中,我们经常面临数据不足的问题。迁移学习是一种解决这一问题的有效方法。本章节将通过一个简单的案例,介绍如何使用迁移学习对狼和狗的图像进行分类。原创 2024-07-07 15:12:39 · 488 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 9 天 | FCN 图像语义分割 》
FCN是一种用于图像语义分割的深度学习框架,由UC Berkeley的Jonathan Long等人在2015年提出。它是首个能够进行端到端像素级预测的全卷积网络。FCN的关键技术1.卷积化:FCN使用VGG-16作为backbone,将全连接层转换为卷积层,使网络能够输出与输入图片大小相同的heatmap。2.上采样:为了从较小的特征图中恢复到原图大小,FCN采用上采样技术。这通常涉及到双线性插值,并在网络中通过反向传播学习非线性上采样。原创 2024-07-02 22:37:02 · 425 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 8 天 | 模型保存与加载&使用静态图加速 》
签名:Sam9029保存与加载模型没有多少内容,就把使用静态图加速一起看了在学习深度学习的过程中,经常需要保存训练好的模型参数,以便进行微调或部署。同时,为了提高模型运行效率,还需要了解如何使用静态图加速。原创 2024-07-02 22:35:47 · 450 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 7 天 | 模型训练 》
这一节有一个疑问:深度学习中的 模型和深度学习网络 是什么关系?在实际应用中,当我们谈论“模型”时,可能是在讨论模型的架构、性能、泛化能力或如何将其应用于特定任务。而当我们谈论“深度学习网络”时,我们可能更侧重于网络的结构和工作原理。总结来说,深度学习网络是实现深度学习模型的一种方式,而模型是深度学习网络学习得到的能够进行预测或分类的具体实例。在深度学习领域,这两个术语经常可以互换使用,尤其是在讨论具体的神经网络结构时。原创 2024-06-25 22:44:21 · 1031 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 6 天 | 函数式自动微分 》
《昇思 25 天学习打卡营第 6 天 | 函数式自动微分 》原创 2024-06-25 22:42:50 · 440 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 5天 | 网络构建 》
类Network继承自MindSpore的nn.Cell,用于构建神经网络模型# 构造函数初始化网络层super().__init__() # 调用基类的构造函数self.flatten = nn.Flatten() # 实例化一个Flatten层,用于数据展平操作# 使用SequentialCell组织一系列按顺序执行的层。原创 2024-06-24 21:35:12 · 527 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 4 天 | 数据集 Dataset 》
mindspore.dataset模块提供了一些常用的公开数据集和标准格式数据集的加载API可随机访问数据集可迭代数据集生成器结合上一张了解的 张量 Tensor 数据类型,原来在数据集中表现深度学习 就是基于 数据数据的处理,数据集就是一类型的数据,不同深度学习模型的方向有对应的数据集mindscope AI训练框架 提供了大量的预加载数据集,可以使用API一键下载使用,非常方便;千里之行,始于足下!我会继续一步一步的保持学习,在 昇思社区 进行 AI 技术方面的探索和学习。原创 2024-06-24 21:34:18 · 573 阅读 · 0 评论 -
《昇思 25 天学习打卡营第 3 天 | 张量 Tensor 》
# 《昇思 25 天学习打卡营第 3 天 | 张量 Tensor 》原创 2024-06-21 22:37:34 · 259 阅读 · 1 评论 -
《昇思25天学习打卡营第2天 | 快速入门》
今天学习使用 MindSpore的API来快速实现一个简单的深度学习模型原创 2024-06-20 21:57:21 · 334 阅读 · 0 评论 -
《昇思25天学习打卡营第1天 | 认识MindScope AI框架和昇思大模型平台》
MindSpore的架构设计精妙,从ModelZoo的丰富模型库到MindSpore Extend的领域扩展,再到MindScience的科学计算套件,每一个模块都充满了创新和可能。对于大规模神经网络模型,MindSpore的分布式训练原生支持让我无需编写复杂的分布式策略,只需少量代码即可实现高效的并行训练,这简直是开发者的福音。不过没关系,对于我的理解在于,对于非专业的业余AI爱好者,mindScope 依靠 昇思大模型平台 开展了许多的活动,其中就包括AI入门课程。原创 2024-06-19 21:24:43 · 1098 阅读 · 0 评论