2021-09-26

自然数拆分

完全背包???
笑死,刚开始根本没想到,以为是组合数学
行了,既然是背包,就很简单了。
不过还是写一下数学:
转移方程

		for(int j=1;j<=i;j++)
			f[i][j]=((LL)f[i-1][j-1]+(LL)f[i-j][j])%mod;

然后我发现书(《算法进阶》)上还有原码……
背包的:

f[0]=1;
for(int i=1;i<=n;i++){
	for(int j=i;j<=n;j++){
		f[j]=(f[j]+f[j-1])%mod;
	}
}

附上AK原码:

#include<bits/stdc++.h>
#define LL long long
using namespace std;
int f[4001][4001],n,mod=2147483648/*这个地方很离谱,这个我真的是,建议视测试机性能改范围*/,ans=0;
int main(){
	scanf("%d",&n);
	f[0][0]=1;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=i;j++)
			f[i][j]=((LL)f[i-1][j-1]+(LL)f[i-j][j])%mod;
	for(int i=2;i<=n;i++)
		ans=((LL)ans+(LL)f[n][i])%mod;
	printf("%d",ans);
	/*f[0]=1;
	for(int i=1;i<=n;i++){
		for(int j=i;j<=n;j++){
			f[j]=(f[j]+f[j-1])%mod;
		}
	}*/
}


反素数

这个题刚拿到我蒙了,然后我……邪恶的想法蠢蠢欲动

暴力 !!!

#include<bits/stdc++.h>
using namespace std;
int n;
int s[70]={1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560,10080,15120,20160,25200,27720,45360,50400,55440,83160,110880,166320,221760,277200,332640,498960,554400,665280,720720,1081080,1441440,2162160,2882880,3603600,4324320,6486480,7207200,8648640,10810800,14414400,17297280,21621600,32432400,36756720,43243200,61261200,73513440,110270160,122522400,147026880,183783600,245044800,294053760,367567200,551350800,698377680,735134400,1102701600,1396755360,2000000001};
int main()
{
	scanf("%d",&n);
	for(int i=0;i<=70;++i)
	{
		if(n<s[i])
		{
			printf("%d",s[i-1]);
			break;
		}
	}
	return 0;
}

OK,优雅谢幕。
然后
官方思路:
一个数约数的个数:设这个数是由 x1,x2,x3…乘起来的(xi 都是素数),那么一
个数的约数个数就是这些素数次数+1 乘起来;
如 36 = 22*32,那么约数个数为(2+1)(2+1)=9;
我们推的反素数其实一个 1-n 中含有最多约数,并且这个数最小的数字。
假设这个数为 x,我们画一个数轴来看,因为要任意的小于 x 的正整数 i,所以
x 点右边的数不考虑。再看左边的数,约数个数都是小于等于 f(x)但是都是小于
x 的。
这里有几个性质:
1, 2
10^9 中约数个数最多的数一共有 1600 个约数。
2, 2^30 > 2 10^9
3,利用中国四大定理可以知道。我们分解质因子再看看题目范围最多用到 9 个
质因子就会超过范围了。
4,我们分解质因子的时候我们的因子指数是递减的。
所以综上,我们可以使用爆搜来处理问题。
2
357111317192329>2000000000
加两个剪枝:
①从小到大枚举质因数,不要让 顺序不同的 算作不同的方案。
②小的因数的指数必然大于大的因数的指数,

<1>约数个数相同时,小的数更优。
<2>大的数与小的数有相同的因数个数时,根据定义,大的数压根不是反质数了。
加油,相信你能消化


越狱

其实就考考快速幂,然后还是很简单的思路:正难则反,注意大小,反正不需要高精就完事。
贴个代码 ,溜了

#include<bits/stdc++.h>
#define LL long long
using namespace std;
LL n,m,ans;
LL mod=100003;
LL qpow(LL x,LL a){
	LL ans=1;
	while(a){
		if(a&1)ans=ans*x%mod;
		x=x*x%mod;
		a>>=1;
	}
	return ans;
}
int main(){
	scanf("%lld%lld",&m,&n);
	printf("%lld",(qpow(m,n)+mod-m*qpow(m-1,n-1)%mod)%mod);
}

佳佳的 Fibonacci

首先化简原式:
你需要明白的:S[n]=F[n+2]-1:
证:S[n]= ∑ i = 1 n \displaystyle \sum^{n}_{i=1} i=1nF[i]
= ∑ i = 1 n \displaystyle \sum^{n}_{i=1} i=1nF[i]+F[1]-F[1]
=F[3]+F[2]+f[3~n]-F[1]
=F[4]+f[3]+f[4~n]-f[1]
……
=F[n+2]-1
一种思路:
原式
f[i] = f[i-1]+f[i-2]
T[n] = f[1]+f[2] × \times × 2+f[3] × \times × 3+…+f[n] × \times × n

S[n] = f[1]+f[2]+f[3]+…+f[n]
n*S[n] = n × \times × f[1]+n × \times × f[2]+n × \times × f[3]+…+n × \times × f[n]

–> P[n] = n × \times × S[n]-T[n]
–> P[n] = (n-1) × \times × f[1]+(n-2) × \times × f[2]+…+(n-n) × \times × f[n]
因为
–> P[n-1] = (n-1) × \times × S[n]-T[n-1]
–> P[n-1] = (n-2) × \times × f[1]+(n-3) × \times × f[2]+…+(n-1-(n-1)) × \times × f[n-1]

–> S[n-1] = f[1]+f[2]+f[3]+…+f[n-1]
所以
P[n]=P[n-1]+S[n-1]


然后我们推出来的是:
另一种思路:

T[n]=F[n+2] × \times × n-F[n+3}+2
然后用一个矩阵乘法,就很nice:

void mul(int f[2], int a[2][2]) {
	int c[2];
	memset(c, 0, sizeof(c));
	for (int j = 0; j < 2; j++)
		for (int k = 0; k < 2; k++)
			c[j] = (c[j] + (long long)f[k] * a[k][j]) % mod;
	memcpy(f, c, sizeof(c));
}
void mulself(int a[2][2]) {
	int c[2][2];
	memset(c, 0, sizeof(c));
	for (int i = 0; i < 2; i++)
		for (int j = 0; j < 2; j++)
			for (int k = 0; k < 2; k++)
				c[i][j] = (c[i][j] + (long long)a[i][k] * a[k][j]) % mod;
	memcpy(a, c, sizeof(c));
}

然后

#include<bits/stdc++.h>
#define LL long long
using namespace std;
LL n,mod,k;
void mul(int f[2], int a[2][2]) {
	int c[2];
	memset(c, 0, sizeof(c));
	for (int j = 0; j < 2; j++)
		for (int k = 0; k < 2; k++)
			c[j] = (c[j] + (long long)f[k] * a[k][j]) % mod;
	memcpy(f, c, sizeof(c));
}
void mulself(int a[2][2]) {
	int c[2][2];
	memset(c, 0, sizeof(c));
	for (int i = 0; i < 2; i++)
		for (int j = 0; j < 2; j++)
			for (int k = 0; k < 2; k++)
				c[i][j] = (c[i][j] + (long long)a[i][k] * a[k][j]) % mod;
	memcpy(a, c, sizeof(c));
}
int main(){
	scanf("%lld%lld",&n,&mod);
	n+=2;
	k=n-2;
	int f[2] = {0,1};
	int a[2][2] = {{0,1}, {1,1}};
	for (; n; n >>= 1) {//注意这里改变了n的值,所以用k存一下
		if (n & 1) mul(f, a);
		mulself(a);
	}
	f[0]=f[0]*k%mod;
	printf("%lld",(f[0]-f[1]+2+mod)%mod);
}

就这样快乐的结束了。
终于写完了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值