ChatGPT深度科研应用、数据分析及机器学习、AI绘图与高效论文撰写及Python、PyTorch代码实现(1)

最后

🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

第二章 ChatGPT4 提示词使用方法与技巧
1、(实操演练)ChatGPT Prompt (提示词)使用技巧(为ChatGPT设定身份、明确任务内容、提供任务相关的背景、举一个参考范例、指定返回的答案格式等)
2、(实操演练)常用的ChatGPT提示词模板
3、(实操演练)基于模板的ChatGPT提示词优化
4、(实操演练)利用ChatGPT4 及插件优化提示词
5、(实操演练)通过promptperfect.jina.ai优化提示词
6、(实操演练)利用ChatGPT4 及插件生成提示词
7、(实操演练)ChatGPT4突破Token限制实现接收或输出万字长文(什么是Token?Token数与字符数之间的互相换算、五种方法提交超过Token限制的文本、四种方法让ChatGPT的输出突破Token限制)
8、(实操演练)控制ChatGPT的输出长度(使用修饰语、限定回答的范围、通过上下文限定、限定数量等)
9、(实操演练)利用ChatGPT4 及插件保存喜欢的ChatGPT提示词并一键调用
10、(实操演练)利用ChatGPT4实现网页版游戏的设计、代码自动生成与运行
11、案例演示与实操练习

第三章 ChatGPT4助力日常生活、学习与工作
1、(实操演练)ChatGPT4助力中小学生功课辅导(写作文、作文批改、求解数学题、练习英语听说读写、物理计算、化学计算等)
2、(实操演练)ChatGPT4助力文案撰写与润色修改
3、(实操演练)ChatGPT4助力家庭健康管理(化验单结果解读、就诊咨询与初步诊断、常见慢病管理、日常营养膳食建议等)
4、(实操演练)ChatGPT4助力大学生求职与就业(撰写简历、模拟面试、职业规划等)
5、(实操演练)ChatGPT4助力商业工作(行业竞品检索与分析、产品创意设计与建议、推广营销策略与方案制定、撰写合同)
6、(实操演练)利用ChatGPT4 创建精美的思维导图
7、(实操演练)利用ChatGPT4 生成流程图、甘特图
8、(实操演练)利用ChatGPT4 制作PPT
9、(实操演练)利用ChatGPT4自动创建视频
10、(实操演练)ChatGPT4辅助教师高效备课(苏格拉底式教学、为不同专业学生生成不同的教学内容、围绕知识点生成不同难度的题目检测学生的学习效果等)
11、(实操演练)ChatGPT4辅助学生高效学习(利用插件生成个性化学习计划)
12、案例演示与实操练习

第四章 ChatGPT4助力信息检索、总结分析、论文写作与投稿
1、(实操演练)传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)
2、(实操演练)利用ChatGPT4 实现联网检索文献
3、(实操演练)利用ChatGPT4阅读与总结分析学术论文内容(三句话摘要、子弹式要点摘要、QA摘要、表格摘要、关键词与关键句提取、页面定位、多文档对比、情感分析)
4、(实操演练)利用ChatGPT4 总结Youtube视频内容
5、(实操演练)利用ChatGPT4完成学术论文的选题设计与优化
6、(实操演练)利用ChatGPT4自动生成论文的总体框架、论文摘要、前言介绍、文献综述、完整长篇论文等
7、(实操演练)利用ChatGPT4完成论文翻译(指定翻译角色和翻译领域、提供背景提示)
8、(实操演练)利用ChatGPT4实现论文语法校正
9、(实操演练)利用ChatGPT4完成段落结构及句子逻辑润色
10、(实操演练)利用ChatGPT4完成论文降重
11、(实操演练)利用ChatGPT4完成论文评审意见的撰写与回复
12、案例演示与实操练习

第五章 ChatGPT4助力Python编程入门、科学计算、数据可视化、数据预处理
1、(实操演练)Python环境搭建(Python软件下载、安装与版本选择;PyCharm下载、安装;Python之Hello World;第三方模块的安装与使用;Python 2.x与Python 3.x对比)
2、(实操演练)Python基本语法(Python变量命名规则;Python基本数学运算;Python常用变量类型的定义与操作;Python程序注释)
3、(实操演练)Python流程控制(条件判断;for循环;while循环;break和continue)
4、(实操演练)Python函数与对象(函数的定义与调用;函数的参数传递与返回值;变量作用域与全局变量;对象的创建与使用)
5、(实操演练)Matplotlib的安装与图形绘制(设置散点、线条、坐标轴、图例、注解等属性;绘制多图;图的嵌套;折线图、柱状图、饼图、地图等各种图形的绘制)
6、(实操演练)Seaborn、Bokeh、Pyecharts等高级绘图库的安装与使用(动态交互图的绘制、开发大数据可视化页面等)
7、(实操演练)科学计算模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)
8、(实操演练)利用ChatGPT4上传本地数据(Excel/CSV表格、txt文本、PDF、图片等)
9、(实操演练)利用ChatGPT4 爬取第三方网站数据
10、(实操演练)利用ChatGPT4 实现常见文件格式之间的转换
11、(实操演练)利用ChatGPT4 实现图像处理(图像缩放、旋转、裁剪、去噪与去模糊)
12、(实操演练)利用ChatGPT4 实现描述性统计分析(数据的频数分析:统计直方图;数据的集中趋势分析:数据的相关分析)
13、(实操演练)常用的数据预处理方法(数据标准化与归一化、数据异常值与缺失值处理、数据离散化及编码处理、手动生成新特征)
14、(实操演练)融合ChatGPT 4与Python的数据预处理代码自动生成与运行
15、(实操演练)利用ChatGPT4实现数据统计分析与可视化(自动生成统计图表)
16、(实操演练)利用ChatGPT4 实现代码逐行讲解
17、(实操演练)利用ChatGPT4 实现代码Bug调试与自动修改
18、案例演示与实操练习

第六章 ChatGPT4助力机器学习建模
1、BP神经网络的基本原理(人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?)
2、(实操演练)BP神经网络的Python代码实现(划分训练集和测试集、数据归一化)
3、(实操演练)BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?什么是交叉验证?)
4、(实操演练)值得研究的若干问题(欠拟合与过拟合、评价指标选择、样本不平衡等)
5、(实操演练)前向型神经网络中的ChatGPT提示词库讲解
6、(实操演练)利用ChatGPT4实现BP神经网络、极限学习机模型的代码自动生成与运行
7、KNN分类模型(KNN算法的核心思想、距离度量方式的选择、K值的选取)
8、朴素贝叶斯分类模型(伯努利朴素贝叶斯BernoulliNB、类朴素贝叶斯CategoricalNB、高斯朴素贝叶斯besfGaussianNB、多项式朴素贝叶斯MultinomialNB、补充朴素贝叶斯ComplementNB)
9、SVM的工作原理(核函数的作用是什么?什么是支持向量?
10、SVM扩展知识(如何解决多分类问题?)
11、(实操演练)KNN、贝叶斯分类与SVM中的ChatGPT提示词库讲解
12、(实操演练)利用ChatGPT4实现KNN、贝叶斯分类、SVM模型的代码自动生成与运行
13、决策树的工作原理(微软小冰读心术的启示;什么是信息熵和信息增益?ID3算法和C4.5算法的区别与联系);决策树除了建模型之外,还可以帮我们做什么事情?
14、随机森林的工作原理(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”的本质是什么?怎样可视化、解读随机森林的结果?)
15、Bagging与Boosting的区别与联系
16、AdaBoost vs. Gradient Boosting的工作原理
17、(实操演练)常用的GBDT算法框架(XGBoost、LightGBM)
18、(实操演练)决策树、随机森林、XGBoost、LightGBM中的ChatGPT提示词库讲解
19、(实操演练)利用ChatGPT4实现决策树、随机森林、XGBoost、LightGBM模型的代码自动生成与运行
20、案例演示与实操练习

第七章 ChatGPT 4助力机器学习模型优化:变量降维与特征选择
1、主成分分析(PCA)的基本原理
2、偏最小二乘(PLS)的基本原理
3、(实操演练)常见的特征选择方法(优化搜索、Filter和Wrapper等;前向与后向选择法;区间法;无信息变量消除法;正则稀疏优化方法等)
4、遗传算法(Genetic Algorithm, GA)的基本原理(以遗传算法为代表的群优化算法的基本思想是什么?选择、交叉、变异三个算子的作用分别是什么?)
5、(实操演练)PCA、PLS、特征选择、群优化算法的ChatGPT提示词库讲解
6、(实操演练)利用ChatGPT4 及插件实现变量降维与特征选择算法的代码自动生成与运行
7、案例演示与实操练习

第八章 ChatGPT 4助力卷积神经网络建模
1、深度学习简介(深度学习大事记、深度学习与传统机器学习的区别与联系)
2、卷积神经网络的基本原理(什么是卷积核、池化核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?)
3、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系
4、(实操演练)利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)
5、(实操演练)卷积神经网络调参技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?)
6、(实操演练)卷积神经网络中的ChatGPT提示词库讲解
7、(实操演练)利用ChatGPT4 及插件实现卷积神经网络模型的代码自动生成与运行
(1)CNN预训练模型实现物体识别;
(2)利用卷积神经网络抽取抽象特征;
(3)自定义卷积神经网络拓扑结构
8、案例演示与实操练习

第九章 ChatGPT 4助力迁移学习建模
1、迁移学习算法的基本原理(为什么需要迁移学习?迁移学习的基本思想是什么?)
2、(实操演练)基于深度神经网络模型的迁移学习算法
3、(实操演练)迁移学习中的ChatGPT提示词库讲解
4、(实操演练)利用ChatGPT4及插件实现迁移学习模型的代码自动生成与运行
5、实操练习

第十章 ChatGPT 4助力生成式对抗网络建模
1、生成式对抗网络GAN(什么是对抗生成网络?为什么需要对抗生成网络?对抗生成网络可以帮我们做什么?GAN给我们带来的启示)
2、GAN的基本原理及GAN进化史
3、(实操演练)生成式对抗网络中的ChatGPT提示词库讲解
4、(实操演练)利用ChatGPT4 及插件实现生成式对抗网络模型的代码自动生成与运行
5、实操练习

第十一章 ChatGPT 4助力RNN、LSTM建模
1、循环神经网络RNN的基本工作原理
2、长短时记忆网络LSTM的基本工作原理
3、(实操演练)RNN与LSTM中的ChatGPT提示词库讲解
4、(实操演练)利用ChatGPT4 及插件实现RNN、LSTM模型的代码自动生成与运行
5、案例演示与实操练习

第十二章 ChatGPT 4助力YOLO目标检测建模
1、什么是目标检测?目标检测与目标识别的区别与联系
2、YOLO模型的工作原理,YOLO模型与传统目标检测算法的区别
3、(实操演练)YOLO模型中的ChatGPT提示词库讲解
4、(实操演练)利用ChatGPT4 及插件实现YOLO目标检测模型的代码自动生成与运行
(1)利用预训练好的YOLO模型实现目标检测(图像检测、视频检测、摄像头实时检测);
(2)数据标注演示(LabelImage使用方法介绍);
(3)训练自己的目标检测数据集
5、案例演示与实操练习

第十三章 ChatGPT 4助力自编码器建模
1、什么是自编码器(Auto-Encoder, AE)?
2、经典的几种自编码器模型原理介绍(AE、Denoising AE, Masked AE)
3、(实操演练)自编码器模型中的ChatGPT提示词库讲解
4、(实操演练)利用ChatGPT4 及插件实现自编码器模型的代码自动生成与运行
(1)基于自编码器的噪声去除;
(2)基于自编码器的手写数字特征提取与重构;
5、案例演示与实操练习

第十四章 ChatGPT4助力机器学习与深度学习建模的行业应用
1、(实操演练)利用ChatGPT4实现近红外光谱分析模型的建立、代码自动生成与运行
2、(实操演练)利用ChatGPT4实现生物医学信号(时间序列、图像、视频数据)分类识别与回归拟合模型的建立、代码自动生成与运行
3、(实操演练)利用ChatGPT4实现遥感图像目标检测、地物分类及语义分割模型的建立、代码自动生成与运行
4、(实操演练)利用ChatGPT4实现大气污染物预测模型的建立、代码自动生成与运行
5、(实操演练)利用ChatGPT4实现自然语言处理模型的建立、代码自动生成与运行
6、案例演示与实操练习

第十五章 ChatGPT 4 助力深度学习模型可解释性与可视化方法
1、什么是模型可解释性?为什么需要对深度学习模型进行解释?

现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。

分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值