2024年最全人脸识别实战:使用Python OpenCV 和深度学习进行人脸识别(2),2024年最新村干部面试题目及答案

本文介绍如何使用Python的OpenCV库和深度学习进行人脸识别,详细阐述了从数据预处理到识别的步骤,包括加载图像、检测人脸、计算人脸嵌入、匹配已知编码,并提供了代码示例,适用于视频和图像的人脸识别。
摘要由CSDN通过智能技术生成

最后

🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

import the necessary packages

from imutils import paths

import face_recognition

import argparse

import pickle

import cv2

import os

dataset_path=‘dataset’

encodings_path=‘encodings.pickle’

detection_method=‘cnn’

获取数据集中输入图像的路径

print(“[INFO] quantifying faces…”)

imagePaths = list(paths.list_images(dataset_path))

初始化已知编码和已知名称的列表

knownEncodings = []

knownNames = []

遍历图像路径

for (i, imagePath) in enumerate(imagePaths):

从图片路径中提取人名

print(“[INFO] processing image {}/{}”.format(i + 1,

len(imagePaths)))

name = imagePath.split(os.path.sep)[-2]

加载输入图像并从 BGR 转换(OpenCV 排序)

到 dlib 排序(RGB)

image = cv2.imread(imagePath)

rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

检测边界框的 (x, y) 坐标

对应输入图像中的每个人脸

boxes = face_recognition.face_locations(rgb, model=detection_method)

计算人脸的嵌入

encodings = face_recognition.face_encodings(rgb, boxes)

遍历 encodings

for encoding in encodings:

将每个编码 + 名称添加到我们的已知名称集中

编码

knownEncodings.append(encoding)

knownNames.append(name)

导入包,定义全局变量

变量的含义:

  • dataset_path:数据集的路径。

  • encodings_path :我们的人脸编码被写入这个参数指向的文件路径。

  • detection_method :在我们对图像中的人脸进行编码之前,我们首先需要检测它们。 或者两种人脸检测方法包括 hog 或 cnn 。

现在我们已经定义了我们的参数,让我们获取数据集中文件的路径(以及执行两个初始化):

输入数据集目录的路径来构建其中包含的所有图像路径的列表。

在循环之前分别初始化两个列表 knownEncodings 和 knownNames 。 这两个列表将包含数据集中每个人的面部编码和相应的姓名。

这个循环将循环 19次,对应于我们在数据集中的 19张人脸图像。

遍历每个图像的路径。从 imagePath中提取人名。 然后让我们加载图像,同时将 imagePath 传递给 cv2.imread。 OpenCV 使用BGR 颜色通道,但 dlib 实际上期望 RGB。 face_recognition 模块使用 dlib ,交换颜色空间。 接下来,让我们定位人脸并计算编码:

对于循环的每次迭代

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值