最后
🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
import the necessary packages
from imutils import paths
import face_recognition
import argparse
import pickle
import cv2
import os
dataset_path=‘dataset’
encodings_path=‘encodings.pickle’
detection_method=‘cnn’
获取数据集中输入图像的路径
print(“[INFO] quantifying faces…”)
imagePaths = list(paths.list_images(dataset_path))
初始化已知编码和已知名称的列表
knownEncodings = []
knownNames = []
遍历图像路径
for (i, imagePath) in enumerate(imagePaths):
从图片路径中提取人名
print(“[INFO] processing image {}/{}”.format(i + 1,
len(imagePaths)))
name = imagePath.split(os.path.sep)[-2]
加载输入图像并从 BGR 转换(OpenCV 排序)
到 dlib 排序(RGB)
image = cv2.imread(imagePath)
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
检测边界框的 (x, y) 坐标
对应输入图像中的每个人脸
boxes = face_recognition.face_locations(rgb, model=detection_method)
计算人脸的嵌入
encodings = face_recognition.face_encodings(rgb, boxes)
遍历 encodings
for encoding in encodings:
将每个编码 + 名称添加到我们的已知名称集中
编码
knownEncodings.append(encoding)
knownNames.append(name)
导入包,定义全局变量
变量的含义:
-
dataset_path:数据集的路径。
-
encodings_path :我们的人脸编码被写入这个参数指向的文件路径。
-
detection_method :在我们对图像中的人脸进行编码之前,我们首先需要检测它们。 或者两种人脸检测方法包括 hog 或 cnn 。
现在我们已经定义了我们的参数,让我们获取数据集中文件的路径(以及执行两个初始化):
输入数据集目录的路径来构建其中包含的所有图像路径的列表。
在循环之前分别初始化两个列表 knownEncodings 和 knownNames 。 这两个列表将包含数据集中每个人的面部编码和相应的姓名。
这个循环将循环 19次,对应于我们在数据集中的 19张人脸图像。
遍历每个图像的路径。从 imagePath中提取人名。 然后让我们加载图像,同时将 imagePath 传递给 cv2.imread。 OpenCV 使用BGR 颜色通道,但 dlib 实际上期望 RGB。 face_recognition 模块使用 dlib ,交换颜色空间。 接下来,让我们定位人脸并计算编码:
对于循环的每次迭代