- 博客(2)
- 收藏
- 关注
原创 证明:一个函数是正定的等价于它的傅里叶变换是正的 ——Bochner
1.定理解释首先,函数正定的定义为:对于函数f(x)f(x)f(x),∀n,∀t1,t2,...,tn\forall n,\forall t_1,t_2,...,t_n∀n,∀t1,t2,...,tn,f(ti−tj)f(t_i-t_j)f(ti−tj)所组成的矩阵是正定的。其中f(ti−tj)f(t_i-t_j)f(ti−tj)为矩阵第iii行第jjj个元素。这里,为了方便阅读给出矩阵的正定的定义:对于一个n×nn\times nn×n的实对称矩阵RRR,任取长度为nnn的非0的向量
2022-03-10 17:28:10 1664 1
原创 线性方程组的解系
线性方程组的解系齐次线性方程组非齐次线性方程组齐次线性方程组对于齐次线性方程组:x1+2x2+x3+2x4=0,2x1+4x2+x3+3x4=0,3x1+6x2+x3+4x4=0,\begin{matrix}x_1+2x_2+x_3+2x_4=0,\\2x_1+4x_2+x_3+3x_4=0,\\3x_1+6x_2+x_3+4x_4=0,\\\end{matrix}x1+2x2+x3+2x4=0,2x1+4x2+x3+3x4=0,3x1+6x2+x3+4x4=0,
2021-09-13 13:12:13 159
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人