证明:一个函数是正定的等价于它的傅里叶变换是正的 ——Bochner

1.定理解释

  首先,函数正定的定义为:对于函数 f ( x ) f(x) f(x) ∀ n , ∀ t 1 , t 2 , . . . , t n \forall n,\forall t_1,t_2,...,t_n n,t1,t2,...,tn f ( t i − t j ) f(t_i-t_j) f(titj)所组成的矩阵是正定的。其中 f ( t i − t j ) f(t_i-t_j) f(titj)为矩阵第 i i i行第 j j j个元素。

  这里,为了方便阅读给出矩阵的正定的定义:对于一个 n × n n\times n n×n的实对称矩阵 R R R,任取长度为 n n n的非0的向量 α \alpha α,都有 α T R α ≥ 0 \alpha ^TR\alpha \geq 0 αTRα0,则 R R R称为正定矩阵。(当然,有人可能会说,应该是大于0,而不是大于等于0,大于等于0时为半正定矩阵或者非负定矩阵,这里不过多的纠结。)

  如果只看函数正定的定义,很难判断直接这个函数是否为正定的。直到美国学者Bochner提出一个函数如果是正定的那么它的傅里叶变换一定是正的。这对人们函数正定的有了更加直观的了解。用数学语言描述如下:

f ( x ) 正 定 ⇔ ∫ − ∞ + ∞ f ( t ) e − j ω t d t = f ( ω ) ⩾ 0 f(x) 正定\Leftrightarrow \int_{-\infty }^{+\infty}f(t)e^{-j\omega t}dt=f(\omega )\geqslant 0 f(x)+f(t)ejωtdt=f(ω)0

2.必要性证明

  我们先证明 " ⇐ " "\Leftarrow" "" ,即知道傅里叶变换是正的,推导出函数是正定的。对于所有的 ω \omega ω,根据函数正定的定义很容易得到函数 g ( t ) = e j ω t g(t)=e^{j\omega t} g(t)=ejωt是正定的。

  根据函数正定的定义, R = ( e j ω ( t i − t j ) ) i j R=(e^{j\omega (t_i - t_j)})_{ij} R=(ejω(titj))ij。如果这里令

β = ( e j ω t 1 , e j ω t 2 , . . . , e j ω t n ) H \beta =\left ( e^{j\omega t_1}, e^{j\omega t_2},...,e^{j\omega t_n}\right )^H β=(ejωt1,ejωt2,...,ejωtn)H

  很容易看出 R = β H β R = \beta^H \beta R=βHβ(注意:这里的 β \beta β在复数域, β H \beta^H βH表示对 β \beta β取共轭转置,取共轭时虚部会取反。)

  然后对于 ∀ α ∈ C n \forall \alpha \in \mathbb{C}^n

  • 6
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值