题目:给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。算法的时间复杂度应该为 O(log (m+n)) 。
来源:力扣
示例1:输入:nums1 = [1,3], nums2 = [2] 输出:2.00000 解释:合并数组 = [1,2,3] ,中位数 2
示例2:输入:nums1 = [1,2], nums2 = [3,4] 输出:2.50000 解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
vector<int> nums3 = nums2; //创建一个新数组合并两个数组
vector<int> ::iterator it1 = nums1.begin(); //设置1个迭代器指向数组1的首元素
double median; //设置返回值,因为返回值可能为小数所以采用double类型的变量
int node; //设置一个标志,记录中位数的下标
while (it1 != nums1.end()) //当迭代器都到末尾时,停止循环
{
nums3.push_back(*it1); //往新数组中添加元素
it1++; //迭代器指向下一元素
}
sort(nums3.begin(), nums3.end()); //将新数组排序
node = nums3.size(); //查看中位数是基数还是偶数
if (node % 2 == 1) //如果是基数直接返回中位数
return median = nums3[node/2];
else //如果是偶数则当前值加前面的值除于2.0,因为是先计算后赋值,所以在计算那步,如果是2则会在计算结果时直接去掉小数部分
{
median = (nums3[node/2 - 1] + nums3[node/2]) / 2.0;
return median;
}
}
};
解题思路:合并两个数组,然后sort排序,取中位数下标,根据数组大小是基数/偶数分别求解中位数
class Solution {
public:
int getKthElement(const vector<int>& nums1, const vector<int>& nums2, int k) {
/* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
* 这里的 "/" 表示整除
* nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
* nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
* 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
* 这样 pivot 本身最大也只能是第 k-1 小的元素
* 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
* 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
* 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
*/
int m = nums1.size();
int n = nums2.size();
int index1 = 0, index2 = 0;
while (true) {
// 边界情况
if (index1 == m) {
return nums2[index2 + k - 1];
}
if (index2 == n) {
return nums1[index1 + k - 1];
}
if (k == 1) {
return min(nums1[index1], nums2[index2]);
}
// 正常情况
int newIndex1 = min(index1 + k / 2 - 1, m - 1);
int newIndex2 = min(index2 + k / 2 - 1, n - 1);
int pivot1 = nums1[newIndex1];
int pivot2 = nums2[newIndex2];
if (pivot1 <= pivot2) {
k -= newIndex1 - index1 + 1;
index1 = newIndex1 + 1;
}
else {
k -= newIndex2 - index2 + 1;
index2 = newIndex2 + 1;
}
}
}
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int totalLength = nums1.size() + nums2.size();
if (totalLength % 2 == 1) {
return getKthElement(nums1, nums2, (totalLength + 1) / 2);
}
else {
return (getKthElement(nums1, nums2, totalLength / 2) + getKthElement(nums1, nums2, totalLength / 2 + 1)) / 2.0;
}
}
};
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
if (nums1.size() > nums2.size()) {
return findMedianSortedArrays(nums2, nums1);
}
int m = nums1.size();
int n = nums2.size();
int left = 0, right = m;
// median1:前一部分的最大值
// median2:后一部分的最小值
int median1 = 0, median2 = 0;
while (left <= right) {
// 前一部分包含 nums1[0 .. i-1] 和 nums2[0 .. j-1]
// 后一部分包含 nums1[i .. m-1] 和 nums2[j .. n-1]
int i = (left + right) / 2;
int j = (m + n + 1) / 2 - i;
// nums_im1, nums_i, nums_jm1, nums_j 分别表示 nums1[i-1], nums1[i], nums2[j-1], nums2[j]
int nums_im1 = (i == 0 ? INT_MIN : nums1[i - 1]);
int nums_i = (i == m ? INT_MAX : nums1[i]);
int nums_jm1 = (j == 0 ? INT_MIN : nums2[j - 1]);
int nums_j = (j == n ? INT_MAX : nums2[j]);
if (nums_im1 <= nums_j) {
median1 = max(nums_im1, nums_jm1);
median2 = min(nums_i, nums_j);
left = i + 1;
} else {
right = i - 1;
}
}
return (m + n) % 2 == 0 ? (median1 + median2) / 2.0 : median1;
}
};
以上两种是官方的答案,具体介绍请点击力扣https://leetcode.cn/problems/median-of-two-sorted-arrays/solution/xun-zhao-liang-ge-you-xu-shu-zu-de-zhong-wei-s-114/
对其中函数不太了解的,可以点击C++帮助文档查找详细信息