大模型幻觉的风刮到医学图像了?看上海复旦的学者如何解决

PS:写在前面,近期感谢很多小伙伴关注到我写的论文解读,我也会持续更新吖~同时希望大家多多支持本人的公主号~

想了解更多医学图像论文资料请移步公主👸号哦~~~后期将持续更新!!


关注我,让我们一起学习新知识,一起进步吧~~~笔芯!!


目录

概览

Abstract

Background

Method

Experiment

Conclusion

Assignment

历史文章


概览


论文标题:

Detecting and Evaluating Medical Hallucinations inLarge Vision Language Models

论文链接:

https://arxiv.org/pdf/2406.1018

代码链接:

作者暂未公布

Abstract

随着大型视觉语言模型(LVLMs)在医疗保健应用中的日益重要,包括医疗视觉问题解答和成像报告生成,这些模型在展现强大能力的同时,也继承了基础大型语言模型(LLMs)的幻觉倾向。幻觉指的是生成看似事实但无根据的内容,这在医疗领域尤其危险,因为容错率极低。然而,目前医疗领域缺乏针对幻觉检测和评估的专用方法和基准。为了填补这一空白,本文提出了Med-HallMark,首个专为医疗多模态领域设计的幻觉检测和评估基准。该基准提供了多任务幻觉支持、多面幻觉数据和层次化幻觉分类。此外,还提出了MediHall Score,一种新的医疗评估指标,通过考虑幻觉的严重性和类型,进行层次化评分,从而实现对潜在临床影响的细致评估。同时,本文还介绍了MediHallDetector,一种为精确幻觉检测而设计的新型医疗LVLM,采用多任务训练。实验结果表明,MediHall Score相比传统指标提供了更细致的理解,而MediHallDetector则表现出增强的性能。

本文贡献:

1.提出Med-HallMark基准为医疗领域幻觉检测和评估提供了首个专用基准,解决了当前缺乏相关方法和标准的问题。

2. 设计MediHall Score:创新性地提出了一种新的医疗评估指标,通过层次化评分系统,考虑幻觉的严重性和类型,实现对LVLMs幻觉影响的细致评估。

3. 开发MediHallDetector构建了一种新型的医疗LVLM,通过多任务训练实现精确的幻觉检测,提高了LVLMs在医疗应用中的可靠性。

Background

随着医学成像技术的不断发展,3D医学图像分割在疾病诊断、治疗规划等方面发挥着越来越重要的作用。然而,高质量的标注数据获取成本高昂且耗时,这限制了深度学习方法在医学图像分割中的广泛应用。半监督学习作为一种有效的解决方案,能够利用大量未标注数据来辅助模型训练。同时,LLM在自然语言处理领域的成功应用,启发了研究者探索其在跨模态任务中的潜力。

Method

4.1 Med-HallMark基准

4.1.1 数据收集与标注

Med-HallMark基准的核心在于构建一个全面且多样化的医疗幻觉数据集。数据收集过程涵盖了多个医疗领域的公共数据集,如医学影像数据集(如ChestX-ray、MIMIC-CXR等)、医疗问答数据集(如MedQA、ClinicalBERT等)以及医疗报告生成数据集(如Radiology Reports等)。为了标注幻觉,作者组织了一个由医疗专家和自然语言处理专家组成的团队,对模型生成的输出进行细致审查,标注出其中存在的幻觉现象。标注过程中考虑了幻觉的类型(如事实错误、逻辑错误、语义错误等)和严重性(如轻微、中等、严重)。

4.1.2 层次化幻觉分类

为了更细致地评估幻觉的影响,Med-HallMark基准提出了一个层次化的幻觉分类体系。该体系首先根据幻觉的类型进行分类,如事实性错误、逻辑不一致、语义混淆等;然后在每个类型下进一步根据幻觉的严重性进行细分,如轻微、中等、严重。这种层次化分类不仅有助于研究者更准确地识别幻觉现象,还能为模型性能的评估提供更为细致的视角。

4.1.3 多任务幻觉支持

为了评估LVLMs在不同医疗任务中的幻觉表现,Med-HallMark基准支持多种医疗任务中的幻觉检测。这包括但不限于医疗视觉问答(如根据医学影像回答医疗问题)、成像报告生成(如根据医学影像生成详细的医疗报告)等。通过多任务幻觉支持,研究者可以全面评估LVLMs在不同应用场景下的幻觉倾向和性能表现。

4.2 MediHall Score评估指标

为了更准确地评估医疗幻觉的影响,本文提出了MediHall Score评估指标。该指标基于Med-HallMark基准中的层次化幻觉分类体系,通过综合考虑幻觉的类型和严重性进行打分。具体来说,对于每个被检测出的幻觉现象,首先确定其类型(如事实性错误),然后根据其严重性(如轻微、中等、严重)给予相应的分数。最终将所有幻觉现象的分数进行汇总,得到模型的MediHall Score。这一评估指标不仅能够反映模型在幻觉检测方面的性能表现,还能为研究者提供关于模型幻觉倾向的细致洞察。

4.3 MediHallDetector检测模型

为了提升医疗幻觉的检测精度和鲁棒性,本文提出了MediHallDetector检测模型。该模型是一种新型的医疗LVLM,采用多任务训练策略进行训练。具体来说,MediHallDetector在训练过程中不仅学习了医疗领域的语言知识和视觉特征表示能力,还通过引入幻觉检测任务来增强其对幻觉现象的识别和判断能力。在模型结构上,MediHallDetector结合了多模态融合技术、注意力机制以及幻觉检测专用模块等先进技术元素,以实现更加精确和高效的幻觉检测。

在训练过程中,MediHallDetector使用Med-HallMark基准中的数据集进行训练,并通过优化损失函数来不断提高其在幻觉检测任务上的性能表现。此外,为了提升模型的泛化能力和鲁棒性,作者还采用了数据增强、正则化等策略来避免过拟合和提高模型的鲁棒性。

Experiment

实验部分具体描述了以下几个方面的内容:

实验设置:

使用Med-HallMark基准对多种流行的LVLMs进行幻觉检测和评估。

通过对比实验,验证MediHall Score和MediHallDetector的有效性和优越性。

实验结果:

实验结果表明,MediHall Score相比传统指标能够提供更细致、更准确的幻觉影响评估。

 MediHallDetector在幻觉检测任务中表现出色,显著提高了检测精度和鲁棒性。

Conclusion

本文针对大型视觉语言模型在医疗应用中的幻觉问题,提出了Med-HallMark基准、MediHall Score评估指标和MediHallDetector检测模型。实验结果表明,这些方法在幻觉检测和评估方面取得了显著进展,为提升LVLMs在医疗应用中的可靠性提供了有力支持。

Assignment

基准与评估指标的重要性:本文强调了建立专用基准和评估指标对于推动领域发展的重要性。未来研究可以借鉴这一思路,针对其他领域的问题建立相应的基准和评估体系。

多任务训练与模型优化:MediHallDetector的成功表明,多任务训练是提高模型性能的有效手段。未来可以探索更多多任务训练策略,以进一步提升模型的泛化能力和鲁棒性。

历史文章

大模型卷入医学图像!PFPs:使用大型视觉和语言模型的提示引导灵活病理分割,用于多样化潜在结果

如何利用大语言模型进行半监督医学图像分割?这篇文章给出了答案


想了解更多医学图像论文资料请移步公主👸号哦~~~后期将持续更新!!
关注我,让我们一起学习新知识,一起进步吧~~~下期见

  • 11
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值