论文解读 | CVPR2023:伪标签引导的对比学习在半监督医学图像分割中的应用

目录

概览

Abstract

本文贡献:

Background

Method

Experiment

Conclusion

Assignment

历史文章


概览

论文标题:

Pseudo-Label Guided Contrastive Learning for Semi-Supervised Medical Image Segmentation

论文链接:

https://openaccess.thecvf.com/content/CVPR2023/papers/Basak_Pseudo-Label_Guided_Contrastive_Learning_for_Semi-Supervised_Medical_Image_Segmentation_CVPR_2023_paper.pdf

代码链接:

https://github.com/hritam-98/PatchCL-MedSeg


Abstract

本文提出了一种新颖的基于伪标签引导的对比学习(Contrastive Learning, CL)框架,用于半监督医学图像分割。该框架结合了半监督学习(Semi-Supervised Learning, SemiSL)和对比学习的优势,通过SemiSL生成的伪标签为CL提供额外的指导,而CL中学习的判别类信息则提高了SemiSL的多类分割性能。此外,本文还设计了一个新的损失函数,协同鼓励类间可分离性和类内紧密性之间的学习表征。实验结果表明,该方法在多个公开可用的多模态数据集上表现优异,相比最先进的方法具有显著优势。

本文贡献:

1. 伪标签引导的对比学习框架:提出了一种新的CL框架,该框架利用SemiSL生成的伪标签为CL提供监督,从而解决了传统CL框架在医学图像分割中无法直接应用的问题。

2. 新的损失函数:设计了一个协同鼓励类间可分离性和类内紧密性的损失函数,进一步提升了分割性能。

3. 基于补丁的语义差异映射:采用了一种新的基于平均补丁熵的补丁间语义差异映射,用于引导正负采样,有效避免了类冲突问题。

4. 广泛的实验验证:在三个公开的多模态数据集上进行了实验分析,验证了所提方法的有效性和优越性。

Background

医学图像分割是医学图像处理中的一项重要任务,对于临床诊断和治疗计划至关重要。然而,获得大规模的像素级注释数据通常耗时且成本高昂,限制了监督学习方法的适用性。半监督学习方法通过利用未标记数据来提高分割模型的泛化能力和准确性,成为解决这一问题的有效途径。然而,传统的SemiSL方法大多没有充分考虑类间可分离性和类内紧密性,限制了其性能。近年来,对比学习在自然图像分类中取得了显著成功,但在医学图像分割中的应用仍面临挑战。 

Method

4.1 伪标签生成模块

该方法首先利用一个预训练的半监督学习模型对未标记的医学图像数据进行初步预测,生成伪标签。这些伪标签虽然存在一定的噪声和误差,但为后续的对比学习提供了重要的监督信息。为了提高伪标签的质量,研究者们可能采用了形态学操作、阈值处理或条件随机场(CRF)等后处理技术来平滑和修正预测结果。

4.2 对比学习框架

在对比学习框架中,设计了一个基于补丁的采样策略,该策略受到伪标签的引导。具体而言,图像被划分为多个小补丁,并根据伪标签为每个补丁分配类别标签。接着,根据补丁间的语义差异(如基于平均补丁熵的度量)来采样正样本对(即属于同一类别的补丁对)和负样本对(即属于不同类别的补丁对)。

对比学习框架采用了一个类似于SimCLR或MoCo的架构,包含一个编码器和一个投影头。编码器负责将补丁映射到低维潜在空间,而投影头则进一步将潜在空间映射到对比学习空间。该框架的目标是使同一类别内的补丁对在对比学习空间中的表示尽可能接近(类内紧密性),而不同类别间的补丁对则尽可能远离(类间可分离性)。

4.3 协同损失函数

为了同时优化伪标签的准确性和对比学习的判别性,研究者们设计了一个协同损失函数。该函数由两部分组成:

伪标签损失:用于衡量伪标签与真实标签(如果可用)或模型预测之间的不一致性。这部分损失通常采用交叉熵损失或其他分类损失,旨在提高伪标签的准确性。

对比损失:用于衡量对比学习空间中补丁对的相似性和差异性。InfoNCE损失或其变体被用于此目的,鼓励正样本对之间的表示相似度高于负样本对。通过优化对比损失,可以学习到更具判别性的表示,从而提高分割性能。

研究者们采用了一个加权和的方式将这两部分损失有效地结合起来,其中权重的选择可以根据具体任务和数据集进行调整。

4.4 训练与优化

在训练过程中,首先使用标记数据预训练伪标签生成模块,并生成未标记数据的伪标签。然后,将伪标签作为监督信息来初始化对比学习框架,并同时优化伪标签损失和对比损失。训练过程中可能采用交替优化策略,即先固定伪标签生成模块来优化对比学习框架,然后再固定对比学习框架来优化伪标签生成模块。通过迭代这种交替优化的过程,可以逐渐提高伪标签的准确性和对比学习的判别性,从而最终提高分割性能。

Experiment

实验在多个公开的多模态医学图像数据集上进行,包括但不限于心脏MRI、肺部CT以及前列腺超声图像等。这些数据集提供了丰富的医学图像样本和相应的像素级或区域级标注,适用于评估医学图像分割算法的性能。

在对比实验中,选择了多种先进的半监督学习方法和对比学习方法作为基准方法,以验证所提方法的优越性。同时,为了公平比较,所有方法均采用了相同的网络架构和初始化方式,并在相同的硬件和软件环境下进行实验。

实验结果表明,所提方法在多个评估指标上均取得了显著优于基准方法的性能。

消融实验结果表明,伪标签生成模块和对比学习框架均对最终性能有显著贡献,且两者结合后的效果最佳。 

 可视化分析则展示了所提方法在不同数据集上的分割效果,进一步验证了其有效性和鲁棒性。

Conclusion

本文提出了一种伪标签引导的对比学习框架,用于半监督医学图像分割。通过结合SemiSL和CL的优势,并利用新的损失函数和基于补丁的语义差异映射,有效提高了分割性能。实验结果表明,该方法在多个数据集上均表现出色,为半监督医学图像分割提供了一种新的有效解决方案。 

Assignment

跨领域融合:本文展示了将对比学习引入半监督医学图像分割领域的可能性,为其他领域的研究提供了新思路。

损失函数设计:设计合理的损失函数对于提升模型性能至关重要,本文提出的协同损失函数为其他任务中的损失函数设计提供了参考。

伪标签利用:伪标签作为半监督学习中的重要工具,其生成和利用方式对于模型性能有很大影响。本文的方法为伪标签的生成和利用提供了新的思路。

未来研究方向:未来可以进一步探索如何更好地结合不同学习方法(如自监督学习、无监督学习等)来提升医学图像分割的性能,以及如何将该方法扩展到其他医学图像处理任务中。


历史文章

论文解读 | Mamba系列 | I2I-Mamba: 通过选择性状态空间建模的多模态医学图像合成

论文解读 | TMI2024 使用跨风格一致性进行半监督医学图像分割:结合形状感知和局部上下文约束

想了解更多医学图像论文资料请移步公主👸号哦~~~后期将持续更新!!
关注我,让我们一起学习新知识,一起进步吧~~~

  • 14
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值